Microb Ecol (1994) 28:163—166
Methods: Traditional and Molecular MICROBIAL
ECOLOGY

© 1994 Springer-Verlag New York Inc.

Is There Anything Else You Need To Understand About the
Microbiota That Cannot Be Derived from Analysis of Nucleic Acids?

D.C. White

Center for Environmental Biotechnology, University of Tennessee/Oak Ridge National Laboratory,
10515 Research Drive, Suite 300, Knoxville, Tennessee 37932-2575, USA

Larry Pomeroy’s insight into the importance of the pelagic marine microbial com-
munity has been more than validated by recent work that goes far beyond the
classical techniques of culture and microscopic analysis by epifluorescence micros-
copy. Two manuscripts in this volume summarize the utility of nucleic acid analy-
sis for determining microbial community structure [2] and measuring growth and
cell division [7].

Will nucleic acid analysis provide all you need to know about the pelagic
microbial community? First, in the matter of determining microbial community
structure, nucleic acid analysis of the pelagic marine community has put to rest one
problem that plagues microbiologists: the idea that if an organism cannot be
cultured, it is not present. The detection of a taxonomically diverse nanoplankton
community in the sea by rRNA analysis that eluded cultural techniques demon-
strated the power of this technology. The ability to amplify nucleic acids with the
polymerase chain reaction (PCR) and the relative ease of extracting nucleic acids
from seawater (without tannins or other PCR inhibitors) makes community analysis
by rRNA even more valuable.

But is nucleic acid analysis enough? My brain cells and kidney cells have exactly
the same DNA and ribosomal rRNA, yet they perform completely different func-
tions. Measurement of mRNA would be helpful but still would not completely
answer the question of gene expression, as sometimes mRNA is not translated or
the enzymes formed are not functional when subjected to posttranslational control.

Can measurement of DNA synthesis by thymidine incorporation (or possibly
more inclusively by H;**PO, incorporation) indicate metabolic activity? My neu-
rons are not dividing and again I hope they are metabolically active! In bacteria,
Poly B-hydroxyalkanoate (PHA) synthesis goes on rapidly and can represent signif-
icant metabolic activity and biomass increase under specific conditions when there
is no DNA synthesis.

So, the problem of what is going on at the moment with the microbes is much
more complex than nucleic acid analysis is capable of answering, and requires
unequivocal phenotypic information. A complementary technique that provides
this phenotypic information involves signature lipid biomarker (SLB) analysis.

The SLB analysis involves a one-phase solvent extraction, fractionation of the
lipids on silicic acid, derivatization, and analysis by gas chromatography/mass
spectrometry [3, 13]. Samples of microbial slimes, sediments, soils, bioreactors,
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Fig.1. Scheme for the signature lipid biomarker (SLB) technique in which membrane filter retentates
are extracted, the nucleic acids recovered and probed, the lipids fractionated, and the fractions
analyzed by gas chromatography/mass spectrometry after derivatization.

the rhizosphere, sea ice, indoor air, and membrane filter retentates have been
analyzed [11, 12], providing insight into the viable biomass, the total biomass, the
community structure, and the nutritional/physiological status of the communities
(Fig. 1). Validation of the SLB analysis has been reviewed [12].

Viable microbes have an intact membrane that contains phospholipids and phos-
pholipid ester-linked fatty acids (PLFA). With cell death, enzymes hydrolyze the
phosphate group within minutes to hours [13]. The lipid core remains for some time
as diglyceride (DG). The resulting DG has the same signature fatty acids as the
phospholipids (until it degrades), so a comparison of the ratio of PLFA to DG
provides insight into the proportions of viable and lysed microbes. Gassing subsur-
face sediments with methane or propane induces growth of type II methane-
oxidizers and/or actinomycetes [8]. Rates of formation of specific metabolic prod-
ucts in estuarine sediments correlate with specific types of sulfate-reducing bacteria
as determined by SLB analysis [10], as specific groups of microbes contain charac-
teristic PLFA patterns. Conditions favoring fungal colonization of detritus correlate
with increases in specific steroids [11]; specific anaerobic aryl dehalogenating
bacteria can be detected in situ in sediments by their signature lipopolysaccharide



Is Nucleic Acid Analysis Enough? 165

hydroxy fatty acids [9]. Not only can the SLB analysis provide quantitative defini-
tion of community structure but the community nutritional status can be deter-
mined. Bacteria undergo unbalanced growth and form PHA if some essential
component is missing and adequate carbon and terminal electron acceptors are
available [11, 12]. Specific patterns of PLFA can indicate physiological stress [4].
Exposure to toxic environments can lead to minicell formation and shifts in PLFA.
Formation of increasing proportions of trans fatty acids with exposure to increasing
concentrations of phenol toxicants has been shown for Pseudomonas [6]. Respira-
tory quinone structure indicates the proportions of aerobic, anaerobic respiratory,
or anaerobic fermentative growth in the community. It was possible to show that
anaerobic respiratory metabolism was responsible for siderite formation in estua-
rine concretions utilizing SLB analysis [1].

The major limitations of SLB analysis are that at least 107 cells are required and
that analysis by solvent extraction is time consuming (25 analyses per week per
person). The sensitivity is greatly increased with electron withdrawing derivatiza-
tion and negative ion detection mass spectrometry [14]; replacement of the solvent
extraction with a semi-automated supercritical fluid extraction greatly speeds up the
analysis [5]. The SLB analysis and nucleic acid probing are complementary in that
the extraction process can be modified to also yield nucleic acids for molecular
analyses from the same sample (Fig. 1).

Signature lipid biomarker (SLB) analysis is an excellent complement to nucleic
acid analysis (for specific gene frequencies) in that it readily provides a comprehen-
sive phenotypic description of the in situ community in environmental samples.
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