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Thepotentialof artificial feed forward nevral networks in assessing the detection ofMycobacteﬂum tuberculosis,

its antibiotic resistance, and the pathogenicity of 19 Mycobacterial species was tested with a set of 67 sirains based
on signature lipid analysis. The lipid signature biomarkers were based on concentration patterns of 36 wax neutral
lipid alcobols and fasty aclds, which to date are found exclusively in Mycobacteria . The strains were assigned io
species by independent clinical laboratories by their cultural properiies and in some cases on the basis of DNA gene
probes. The trained artificial neural nenwork was able to identify corvecily M. tuberculosis strains from their lipid
signatures using one bidden node. The predictive accuracy was independently tested with 10 lipid profiles not used
to train the antificial neural network. The analysis of predictive sensitivity showed that most of M. tuberculosis lipid
signaiyre is separable from otherMycobacterium spp. based on these data. Recognition of antibiotic resistance and
pathogenicity was non-linear requiring multiple bidden nodes. When the same daia set was used lo train an
arttficial neural nefwork with wwo bidden nodes to recognize different nutritional bebaviours, patbogenic and
saprotrophicMycobacterium spp. were successfully recognized with 5% and 4% error, respectively. The successful
recognition of strict pathogenicity was more complex requiring a bidden layer of 23 nodes. An assoctation beiween
the lipid signatures of 15 strains of Mycobacterium tuberculosis with resistance to isoniazid and streptomycin
was achieved with a 7% error by a artificial neural network with 13 bidden nodes. These results suggest that the
analysis of signature lipids by antificial neural nelworkcan be used for species detection/identification, patbogenicity,
and drug resistance. Since signature lipid biomarker analysis does not require isolation and culpure of microbes,
has the potential for automation, rapid analysis, and exquisite sensitivity, the technigue offers great promise in the

detection and management of Mycobacterial disease.

" Introduction
Signature lipid biomarker patterns in cells reﬂect both
genotype and phenotype: gene expression and meta-
bolic activity in response to environmental parameters
(Vestal & White, 1982, White, 1995). In the identification
or classification of micro-organisms, the inferences from
exogenous factors is lost with the routine analysis of
isolates grown under standard culture conditions. DNA
based identifications ofien cannot adequately define the
phenotypic expressions of important traits (White, 1994).
Since the expression of phenotypic traits such as drug
resistance is crucial to the management of the infections,
an analysis that provides both genotypic and phenotypic
properties is desirable. We tested the hypothesis that

utilizing artificial neural network (ANN) analysis of neu-
tral lipid signature biomarkers. The possibility exists that
classical definitions based on cultural properties of a
particular species include biovars with larger phenotypic
differences among themselves than with other close
species.

‘The association between signature lipid composition
and the type of microbial activity is particularly compli-
cated due to the inirinsic variability between different
species. In this case linear associations offer very little
help, asexemplifiedbelow inidentifying the pathogenicity
of a number of Mycobacterism spp.

The accuracy of ANN is necessarily limited by the data
set used to train it. However, a properly trained ANN



Table 1 Mycobacterium species and sirains analysedlisted withthe corresponding
reference codes 2nd sources. The reference code consists of a species code

followed by a strain number.

Species Code Strain Provider

M. africanum MAFR1 ATCC 35711 ATCC, Maryland
MAFR2  ATCC 25420 ATGC, Maryland

M. avium MAVI1 716/95 NPHI, Turku, Finland
MAVIZ  760/93 NFHI, Turky, Finland
MAVI3  640/93 NPHI, Turku, Finland
MAVIE  ATCC 35714 ATCC, Maryland

M. bovis BCG MBOV1 BCGCO Colorado State University
MBOV2 °‘TMC 1011 BCG  Dept Health, Nashville TN

M. chelonae MCHE1 ATCC 51130 CDC, Adanta, GA
MCHEZ ATCC 51131 CDC, Atlanta, GA

M. gastri MGAS1 ATCC 15754 ATCC, Maryland
MGAS2  ATCC 25157 ATCC, Maryland

M. gordonae MGOR1 563/93 NPHI, Turku, Finland
MGOR2 755/93 NPHI, Turku, Finland
MGOR3  833/93 NPHI, Turku, Finland
MGOR4 TMC 1318 Dept Health, Nashiville, TN

M. intracellulare MINT1  603/93 NPHI, Turku, Finland
MINT2  737/93 NPHI, Turku, Finland
MINT3  816/93 NPHI, Turky, Finland
MINT4  ATCC 35761 Dept Health, Nashville TN

M. kansasii MKAN1 TMC 1201 Dept Health, Nashville, TN
MKANZ 139R Dept Health, Nashville TN
MEKAN3 7943 Dept Health, Nashvifle TN
MKAN4 8246 Dept Health, Nashville TN

M. lgprae MLEP co Colorado State Univeréil;y

M. malmoense MMALL  596/93 NPHI, Turkuy, Finland
MMAL2 597/93 NPHI, Turku, Finlarid
MMAI3 619/93 NPHI, Turku, Finland

M. marianum MMAR  464/92 NPHI, Turku, Finland

M. microti MMIC1  ATCC 35781 ATCC, Maryland
MMICZ 116/93 NPHI, Turku, Finland
MMIC3  ATCC 19422 ATCC, Maryland

M. pbleii . MPHL  TMC 1516 Dept Health, Nashville TN

M. scrofulacenm MSCRI 966 R Dept Health, Nashville TN
MSCR2  ATCC 19981 Dept Health, Nashville TN
MSCR3  ATCC 35787 Dept Health, Nashville TN

Table 1 Continued on facing page

Table 2 3-0H-Faity Acids in Actinommycetes Strains (in pmoles/mg dry weight).
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nally, as ANN learns from experience (Hinton, 1992}, its

accuracy will increase as new data becomes available -

and is used to retraining.

Methods
Signature Lipids

The analysis utilized fatty acids and alcohols which
appear thus far to be unique to Mycobacteria and are
derived from the phthiocerol and phenophthiocerol wax
neutral lipids, the phenolic glycolipids, glyco-
peptidolipids, and trehalose-containing lipooligo-
saccharides.

Lolation of the Mycobacterial phthiocerol waxes,
phenophtbiocerol waxes; and mycolate secondary
alcobols
Lyophilized samples were extracted after suspension in
methancl 0.3% NaCl (10:1, v/v ) with sonication. Hexane
was then added and the upper layer recovered. The
lower phase of the methanol-salt solution was extracted
© twice with additional hexane.” The combined hexane
extractants were evaporated in a stream of nitrogen,
dissolved intoluene and hydrolyzed with 30% methanclic
KOH at 100°C. After cooling, the mixture was acidified
and extracted with diethyl ether. The fatty acids were
then methylated and suspended in hexane for analysis by
GC/MS. The diethyl ether extracts were also analysed for
secondary alcohols (Dobson et a@l,, 1985; Minnikin et 4i.,
1987). The secondary alcohols were analyzed as TMS
ethers using miethyl tricosanoate as an internal standard.
Isolation of the 3-hydroxy fatty acids was accom-
plished by subjecting the lyophilized bacteria to 4 N HCl
"in methanol at 85°C for 18 hours. Methyl esters of hydroxy
fatty acids were purified on silicic acid columns (Jantzen
et al, 1993) and after the formation of the trimethylsilyl
esters (TMS)analyzed by GC/MS. GC/MS analysis was by
electron impact with positive ion detection of molecular
ions and fragment ions specific’to the components of
interest. The Mycobacteria strains analyzed and their
sources are listed in Table 1. The straight chain, saturated
3-OH-fatty acids of between 12 and 26 carbons were not
utilized in the analyses as they were present in low (and
variable) amounts and are also found in the related
Actinomyceies, Nocardia, Rbodococcts and
Corynebacterium genera (Table 2).

Source

Number of carbons:number of double bonds

Species
140 160  18:0  20:0 21:0 220 230 240 250 26:0
Rhodococcus equi * ATCC 6939 80 120 40
Rbodococeus rhodachrous ™ ATCC 21197 110 1300 160 105¢ 2500 300 150 60
Nocardia asteroides * ATCC 3308 90 70
Corynebacterium pseudotuberculosis *
: ATCC 19410 40 70 320 20
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Data Analysis

The lipid profile of 67 Mycobacteriumspp .isolates were
processed by cluster analysis and ANN. Lipid concentra-
tions were normalized by dividing the observed value by
the maximum value found for that particular lipid in any
strain, The cluster analysis was performed by unweighted
pair-groupaverage (UPGA) of Euclidean distances (Sneath
& Sokal, 1973). Fully connected feed forward artificial
neural networks (ANN) were implemented in Bratncel™
2.5. The connection weight optimization was performed
by the Back Percolation algorithm (Jurik Research &
Consulting Lic., 1991). In all cases, only one hidden layer
was considered and the number of hidden nodes was set
as the minimum that still allows cross validation with a
data subset not used to train the ANN {(option “best net
search” within Braincel™2.5). Cross validation consisted
of comparing the predictive error for the training data set
with the predictive errorfor a data setnotused to train the
ANN (test data sep), and stop the training process when
the they diverge. A positive identification of a particular
trait was quantified as ‘1’ and a negative identification as
9. The prediction error was defined as the standard
deviation between the predicted and observed values.
Therefore, the prediction error describes primarily the
ANN goodness of fitand not the predictive success: if the
value 0.5 was set as the threshold for a positive identifi-
cation, the predictions of streptomycin resistance in Ta-
ble 11 would be alt correct, yet the predictive error was
15%, Tables 3, 4, 8 and 9 also include the standard
deviation, defined with reference to the average output
value.

The predictive sensitivity to each lipid was calculated
by the maximum variation induced in the prediction by
varying the given lipid concentration. The resulting val-
ues were plotled as cumulative percentages— the sumof
sensitivities to all lipids was 100%.

In order to further understand the recognition proc-
ess, the correlation between each lipid concentration (9
and a positive identification was evaluated by a similarity
(Sid and dissimilarity (DiD) index. These indexes were
calculated as the standard deviations among the positive
identifications and between the positive and negative
identifications, respectively, using both the training and
test data sets (Equation 1). The association between a
differenceinlipid concentration andthe targettraitwould
be reflected by a difference between the similarity and
dissimilarity indexes for thatlipid. The opposite situation
where the individual lipid is not correlated with the trait
would be reflected by approximately equal values of Sif
and DiI However, a low Sif and high Dil does not
necessarily indicate that the target trait can be recognized
solely by thatlipid concentration— the difference would
have to be consistent for all lipid concentrations. On the
other hand, lipids with high values for both indexes can
still be crucial in the recognition of the target trait when
considered together with other lipids. In this case, the
recognition is non-linear and requires ANN with multiple
hidden nodes.

Table 1 Continued from facing page

AtiF5mind Rhmsmerd Afatapimrle tn tho Datoctios of Murobarteriuns tuharculosts Rasad oo Signature Tinid Riomarkers

Species Code Strain Provider
M. smegmatis MSME  TMC 1515 Dept Health, Nashville, TN
M. szulgai MSZU1  525R Dept Health, Nashville, TN
MSZU2 579R Dept Health, Nashville TN
MSZU3 7I9R Dept Health, Nashville TN
M. tuberculosis  MTUB1  H,RvCO Colorado State University
MTUB10 H,, RvIund Lund University Hospital
MTUB1l H,, RvNashville Dept Health, Nashville, TN
MTUB12 TMC201 Dept Health, Nashville, TN
MTUB13 Clin isol Lund Lund University Hospital
MTUB14 3503468 Clinical isolate,
The Toronto Hospital
MTUB1S 3403080 Clinical isolate,
The Toronto Hospital
MTUB16 3491069 Clinical isofate,
The Toronto Hospital
MTUBI7 2605879 Clinical isolate,
The Toronto Hospital
MTURBI8 126614 Clinical isolate,
The Toronto Hospital
MTUB19 2161727 Clinical isolate,
The Toronto Hospital
MTUB2 2750789 .  Clinical isolate,
The Toronto Hospial
MTUB20 228712070 Clinical isclate,
The Toronto Hospital
MTUB3 91684 Clinical isolate,
The Toronto Hospital
MTUB4 3899823 Clinical isolate,
The Toronto Hospital
MTUBS 3934352 Clinical isolate,
The Toronto Hospital
MTUBG 3716681 Clinical isolate,
The Toronto Hospital
MTUB7 3718423 Clinical isolate,
The Toronto Hospital
MTUBS 3446253 Clinical isolate,
The Toronto Hospiltal
MTUBS 5376722 Clinica) isolate, _
The Toronto Hospital
M. ulcerans MULG1  ATCC 19423 ATCC, Maryland
MULC2  ATCC 258%6 ATCC, Maryland
M. xenopii MXEN1 7735 Dept Health, Nashville, TN
MXEN2 148/92 NPHI, Turku, Finland
MXEN3 239R Dept Health, Nashville, TN
MXEN4  1465R Dept Health, Nashville, TN
MXENS TMC 1470 Dept Health, Nashville, TN
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A= data subset with positive identifications consisting of
Tlipid concentrations x SA strains.
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Figure 1 Cluster analysis of normalised lipid profiles. The M. tubercuiosis strains are framed, the fast growing species of Mycobacteriumspp. are marked

‘FG' and the non-pathogenic ‘NP,

The ANN were trained to recognize the following
traits based onthe lipid concentration profile (ipid signa-
ture):

1. Identification of M, tuberculosis

A set of 67 lipid profiles corresponding to identified
Mycobacterium spp strains was used to train an ANN
to identify M. tuberculosis.

Prediction of Mycobacterial pathogenicity

The same set of data was used to fry to infer the
pathogenicity and other nutritional behaviours of the
corresponding species. The same set of 67
Mycobacterium spp lipid profiles clustered in Figure
1 was used to infer the pathogenicily and other
nutritional behaviours of the corresponding species.
Instead of using the raw data, the lipid profile foreach
species (therefore each cluster) was averaged, except
for M. ruberculosis where each of the three clusters
was averaged individually. This procedure ensures
that the test data set will not include lipid signatures

cerame nlonilnat o tlhon rman alonnder cvnnantin tha teainine

3. Prediction ofresistance ofAf. tuberculosis strains
to isoniazid and streptomycin
The lipid profiles of 15 M. tuberculosis sirains isolated
at the Toronto Hospital were used to train a ANN to
associate it with resistance to Isoniazid and strepto-
mycin.

Results 7
1. Identification of M. tuberculosis
The set of 67 lipid profiles corresponding to identified
- Mycobacterium spp strains was analyzed by hierarchical
clustering for its ability to discriminate the different spe-
cies (Figure 1). _

The lipid profiles of the different Mycobacteriumspp.
cluster by species with the exception of M. tuberculosis
which is distributed between two clusters with one differ-
entiated strain (MTUBS). Because cluster analysis failed
to uniquely discriminate M. fuberculosis, a ANN was
trained to accomplish the task. This goal was reached
using only one hidden node. The summary statistics of

e Mt o e B il L il it mmt nem epanantad in
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Table 3 Tdenification of M. tuberculosis from its lipid signature using training
data set. The ANN configuration consisted of one hidden layer and one hidden

ncde.

- s .- Target output  Average quiput Standard Max-Min  Number of
The accuracy of predictions and the simplicity of the arget outp geonp deviaﬁ;n signatuses

1NN suggest that the different M. uberculosis lipid
profiles are clearly separable. The predictive accuracy
was independently tested with 10 lipid profiles notused
to train the ANN (Table 4).
1t should be noted that the M. tuberculosis strain #5
(MTUBS) was included in the test data set. The fact that
its lipid profile clusters apart from the ones used 1o irain
the ANN(Figure 1) did nothinder its correctidentification
(Table 4). The importance of each individual lipid in the Taraetowtput  Average output | Standard | Max-Min  Number of

1.00 0.01 0.05 17
0 0.00 0.01 0.04 40

.

Table 4 Actuat and predicted M. tuberculpsis identification for lipid profiles
used to test the ANN,

recognition of M. tubercuiosts can be ascertained by deviation signatures
plotiing the corresponding sensitivity, similarity and dis-
similarity indexes (Figure 2). 1 1.00 0.00 0.0 3

v (Figure 2) 0 0.00 0.00 0.01 7

2. Prediction of Mycobacterial Pathogenicity
The averaged profiles (see Methods section) were asso- :
ciated with the species nutritional behaviour (Table 5, 6 Tables Key for nutritional behavioural code used in Tables 7 and 8 based on
and 7>, If the lipid profile in some way depends cn the  the dlassifications of Good (1985).
nutritional behaviour, a ANN might recognize it. As ° . — - +
previously, the data set was divided into two subsets, 2 Cooc  Mutrtional behaviour

larger one to train the ANN (Table 6) and the remaining 5 Pathogen
one 0 independently test its predictive accuracy (Table B Saprophyte
7. C Fast Growth
. : D Photochromogen
4

'I?le dat_a presented in Table 6 does ot include 4 [ Scotochromogen
species which were randomly selected to independently g Nonphotochromogen
evaluate the ANN predictive accuracy (Table 7). G Strict Pathogen

Table 6 Data usedtotrain the ANN 1o recognize nutritional behaviour. Theactual and the predicted outputs aredisplayed. The ANN configuration consisted
of one hidden fayer and 2 hidden nodes. The overall prediction error for this data was 7%. The prediction error for pathogenicity only (code A) was 0.1%.

Actial nutrition behaviour Predicted nutrition behaviour

C D E F G

Cluster (Figure 1) A B C D E G A B

M. gfricanum 1 0 0 0 0 0 1 1.01 -0.01 0.04 0.01 -0.01 0.02 0.99
M. avium 1 0 ¢ 0 0 1 0 1.01 .01 00 0.01 -0.01 0.85 0.22
M. bovis i 0 0 0 0 0 1 1.01 -0.01 0.02 0.01 -0.01 002 - 1M
M. chelonas 1 0 1 0 0 0 0 0.57 002 033 0.02 -0.01 0.01 0.37
M. gastyi 0 1 0 0 0 1 0 0.04 0.81 0.63 0.03 017 0.01 -0.01
M. gorodnae 0 1 0 O 1 0 0 0.00 092 015 0.04 1.01 004 -0.01
M. intercellulare 1 0 0 0 0 i 0 1.01 -0.01  -0.01 0.01 -0.01 065 0.17
M, kansasii 1 0 0 1 0 0 0 1.00 000 008 0.02 0.01 0.03 0.03
M. malmoensa o -0 0 0 0 1 0 0.69 016 019 0.02 0.14 002 -001
M. microti 1 0 0 0 0 0 1 1.01 001 004 0.01 -0.01 0.02 1.00
M. phieii 0 1 1 0 ] 0 ] 003 . 085 088 0.02 0.00 0.00 0.08
M. scrofulaceum 1 0 o 0 1 Y 0 1.00 0.00 0.00 0.03 0.73 0.08 -0.01
M. szulgai 1 0 0 0 1 0 0 1.00 -0.01  -0.01 0.03 0.86 0.09 -0.01
M. tuberculosis 5 1 0 0 0 0 0 1 1.01 .01 019 0.01 -0.01 0.01 0.97
M. uberculosis A 1 0 0 0 0 0 1 1.01 001 004 0.01 -0.01 0.02 1.00
M. uberculosis B 1 0 0 0 0 0 1 1.01 -0.01 0.12 0.01 -0.01 0.02 0.96
M. xenopi 1 0 0 0 1 0 0 1.00 000 -0.01 0.03 0.84 009 001

Table 7Actual and predicted M. fubsrculosis identification for lipid profiles not used to train the ANN. The overall prediction error for this data was 5.

Actual nutrition behaviour Predicted nutrition behaviour
Cluster (Figure 1) A B C D E F G A B c D E F G
M. leprae 1 4] 0 0 0 0 1 1.00 0.00 0.18 0.02 0.00 0.02 0.33
1 0 0 1 0 G 0 101 000 005 001 000 002 083

M. marinum

.
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Figure 2 Lipid signature predictive sensitivity, simifarity (Sif) and dissimilarity
(Dib indexes for the recognition of M. tuberculosis. The lower the similarity
index, the higher the homogeneity for that lipid content within M. iuberculosis
strains. The higher the dissimilariry index the higher the differences between M.

tuberculosis stirains and other strains.
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Figure 3 Lipid signature predictive sensitivity, similarity (51D and dissimilarity
(DiD indexes for the recognition of Pathogenicity (nutritional behaviour A)
among Mycobacterium spp. The ANN used was trained to recognize other
nutritional behaviours along with

BINARY Vol. 7 © 1995 BioLine

The results presented in Tables 6 and 7 suggest that
pathogenicity (code A) and some extent Saprotrophic
(B) and fast growers (C), can be identified by analysis of
lipid profiles. However, the nutritional behaviours other
than pathogenicity include too few positive results to risk
a conclusion. The sensitivity plot for pathogenicity recog-
nition is presented in Figure 3. On the other hand this
ANN failed to predict strict pathogenicity (code G) for the
independent data set (Table 7). Another ANN was trained
solely to recognize strict pathogenicity (Table 8) yielding
a better prediction accuracy (Table 9).

The use of a separate ANN to solely recognize strict
pathogenicity (code G) significantly improved the pre-
diction accuracy. A separate ANN was also trained for
pathogenicity (code A) but the prediction accuracy was
much poorer than the one that considers the 7 nutritional
behaviours simultanecusly (results not shown). It could
be speculated that the recognition of a pathogen is
improved ifinformation is available on alternative behav-
iours. On the contrary, a strict pathogen may not show
other behaviours and therefore information on alterna- -
tive behaviours only interferes with strict pathogenicity
recognition.

The relatively small size of the data set for nutritional
behaviours cautions against further elaboration on the
information obtained. -

3. Prediction of resistance of M, tuberculosis Strains
to Isoniazid and Streptomycin
The 15 M. tuberculosis strains isolated at the Toronto
Hospital were characterized for resistance to the antibiot-
icsizoniazil and streptomycin (Tables 10 and 11) and sent
to Tennessee (unidentified) for signature lipid analysis.
The lipid signatures were simplified by excluding those
lipids present in only 3 or less M. tuberculosisstrains. The
resulting profiles consisted of 9 of the original 36 signa-
ture lipid biomarkers. An ANN was optimized to associ-
ate the lipid signature with the antibiotic resistance data

i
e

L 70 o !
{{Isoniazid 80 j JStreptomycin ;
60 $1resistance Sensitivity so 3 resistance * Sennsitivity
Sensttivity (%) Senslitivity : o)
(%) (%)

Figure 4 Lipid signature predictive sensitivity, sifnilarity (Sif and dissimilarity (Did) indexes for the recognition of resistance to streptomycln and izondazil.

- ) N
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CTable 10). Three strains were not used to train the ANN
.0 order to test its predictive accuracy (Table 11). The
sensitivity plots forIzoniazil and streptomycin resistance
are presented in Figure 4.

‘The relative large number of hidden nodes and the
sensitivity plots assert the non-linearity of antibiotic re-
sistance prediction. Morecover, the significantly larger
predictive errors observed with the test data (Table 11)
suggest a weaker generalization than that observed for
M, tuberculosts identification and pathogenicity/strict
pathogenicity predictions.

Generalisation of ANN predictions

In order to evaluate if the independent data subsets were
within the range of training data, the dendrogram in
Figure 2 was used: an outlyer profile would not have as
close neighbours any of the signatures used to train the
ANN. The only independent data subset observed to
include a clear outlyer (MTUBS) was presented in Table
4. Therefore, in the other cases, a poorer prediction for
the test than for the training data subset can be inter-
preted as a measure of the ANN inability to generalize its
predictions within the training range, as was indicated
with the antibiotic resistance analyses presented in Ta-
bles 9 and 10.

Jiscussion

The use ‘of ANN for microbial identifications is a well
established practice (Boddy & Morris, 1993; Goodacre ef
al,, 1994; Kennedy & Takur, 1993; Schindler et al., 1994)
and has been used before to identify species within the
Mycobacterium tuberculosis complex (Freeman et dl,
1994). The results presented hereby for M. tuberculosis
identifications strongly support this practice. The addi-
tional inference of nutritional behaviour and antibiotic

resistance from the lipid profile is more complex as.

reflected by the higher number of hidden nodes required
to make the association, Although the small data set
analyzed advises caution, the results obtained show great
potential for the use of ANN to infer behaviour of possible
clinical importance.

Plotting predictive sensitivity with similarity and dis-
similarity indexes was used to analyze the recognition
process. The non linearity associated with multiple hid-
den nodes was reflected in predictive sensitivity of lipids
which did not correlate with the target trait (i.e. similar Sif
and Dilvalues).

To sum up, the ANN may negotiate the complex
interactions that yield a particular lipid profile and recog-
nize its primary endogenous and exogenous variables.
Furthermore, even if ANN have mostly been used as
black box filters of complex inputs, its ability to put into

svidence underlying dependencies should not be ne-
glected.

Thesignature lipid biomarker analysis reported herein
has the potential to be made into a rapid, sensitive,
potentially automatable, quantitative detection/ identifi-
cation system that can be used to predict potential

B eI T bt} R

Table 8 Recognition of sirict pathogenicity alone. The ANN configuration
consisted of one hidden layer and 23 hidden nodes.

Target cutput ~ Average output Standard Max-Min  Number of
deviation signatures
1 0.59 0.03 0.08 6
0 0.02 0.04 012 11

Table 9 Actuat and predicted strict pathogenicity recognition from lipid profiles
not used to train the ANN (Table 8).

Target output  Average output Standard Max-Min  Number of
deviation signatures
1 0.90 0.07 0.1 2
0 0.01 0.02 0.03 2

Table 10 Antibiotic resistance data and ANN predictions for the training subset.

' 13 hidden nodes were used and the predictive.error was 1% for Fzoniazid and

294 for streptomycin resistance.

Antibiotic resistance ANN predictions
Cede IS0 STR iSO STR
MTUB2 1 1 0.95 0.91
MTUB4 1 0 0.99 0.00
MTUBS 1 0 1.01 -0.01
MTUB7 0 0 0.01 -0.01
MTLIBS 0 0 0.00 -0.01
MTUBS 0 0 -0.01 -0.01
MTUB14 0 0 0.00 0.00
MTUB15 1 i 0.97 0.95
MTUB16 0 0 -0.01 0.00
MTUB17 1 1 0.9 1.00
MTUBI18 1 o 0.59 0.00
MTUB1S 1 0 1.01 0.00

Table 11 Antibiotic resistance data and ANN predictions for the lipid signatures
not used 1o train it. The predictive error was 7% for Izoniazid and 15% for

streptomycin resistance.

Antibiotic resistance ANN predictions
Code 150 STR 150 STR
MTUB3 1 0 0.56 0.19
MTUB6 0 0 -0.01 -0.01
MTUB20 1 1 0.85 075
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