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Abstract: Chemical signatures of biological processes reflect their complex interrelationships, The chemical
profile is rich in information but poor in content due to the complex processes underlying the chemical composition
of natural biological communities. A nonlinear mapping technique, based on artificial neural networks (ANNSs),
was proposed to highlight information coded in Tipid signatures in soil by demonstrating the biolegical response
to hydrocarbon contamination. ANNs do not require mechanistic assumptions, and they can cope with nonlinear
associations. Soil sample lipid signatures were mapped using ANNs to recover information on exposure to
confamination, to assess the potential for bioremediation as assessed by polymerase chain reaction (PCR)/
deoxyribonucleic acid (DNA) gene probes, and to monitor the effects of selected inocula. A two-coordinate system
was built from signature lipid biomarkers containing 64 components from which the values of farget parameters
{6 components) could be recovered. The map tracks bioremediation, as characterized by the target parameters, and
provides information on how parameters interreact during bioremediation. Using 23 soil sample si gnatures, a map
was built from which the 6 target parameters could be recovered with 4.7% average error. Principal component
analyscs and nonlinear factor analyses by autoassociative ANN were compared to the nonlinear mapping informa-

tion. Although these methods provided a good description of signature shift, they did not discriminate among all

target parameters.
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Introduction

The signature lipid biomarker (SLB) technique has
been used with soil samples to provide a chemical
signature for the entire biological community (White
et al., 1996). This technique is useful because fewer
than 1% of soil bacteria detected by direct count are
culturable (Bakken, 1985; Skinner et al,, 1952). Al-
though some lipids are uniquely present in specific
groups, most are present across a wide range of organ-
isms (Komagata and Suzuki, 1987; Lechevalier and
Lechevalier, 1988; White et al., 1996). Likewise, cer-
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tain lipids have been shown to specifically change in
respanse to physiological stress (Heipieper et al., 1992;

Keift et al., 1994; Sikkema et al., 1995; White et al.,

1998).

However, for different organisms and culiure con-
ditions, most lipids respond differently to the same
environmental changes. Consequently, lipid signatures
encode for highly complex information on identity and
physiological status. Conclusions from such informa-
tion can be best inferred using methods that account
for the nonlinear associations among signature compo-
nents, such as ANNs (Almeida et al., 1995).
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To arrive at a more comprehensive assessment of
the potential for in situ bioremediation, SL.Bs have
been combined with PCR/DNA gene probe analysis
{White et al., 1997). Three steps are involved: DNA
extraction by a direct cell-lysing protocol; amplifica-
tion by PCR; and hybridization of the amplified DNA
with a specific chemiluminescent gene probe (White et
al., 1997). By combining the two techniques, informa-
tion on community structure, viable biomass, physi-
ological status, and the potential for activity of rel-
evant enzymes can be obtained, Such joint analysis
provides a powerful tool to quantitatively characterize
the effectiveness of bioremediation throughout the
entire microbial community without the need to isolate
and culture individual microorganisms.

A wealth of complementary information poten-
tially can be recovered from characieristic biochemi-
cal signatures. However, analyzing SLB shifts using
linear techniques such as principal component analysis
(PCA) or clustering on the basis of Euclidean dis-
tances will face two serious drawbacks (Morris and
Boddy, 1995; Sackin and Jones, 1993). First, nonlinear
associations among SLB components are overfooked.
Second, many causes of shifts in the SLBs are not
parameters of interest, with the consequent overshad-
owing of relevant variables such as the potential for
bioremediation, extent of bioremediation, exposure to
contaminants, and persistence of selected/engineered
inocula. Developing mapping techniques that will high-
light variables of interest is critical for providing more
information when using SLBs to monitor in situ
bioremediation.

Materials and Methods

Experimental Procedure

Four sets of duplicate soil samples (sandy loam, pH
6.4, obtained from the University of Tennessee, Knox-
ville Agricultural Experimental Station) were subjected
to combinations of two treatments: contamination by a
hydrocarbon mixture and inoculation by a defined
mixed culture. The hydrocarbon mixture (HC) included
{dry wt soil} 100 itg/g naphthalene, 100 pg/g phenan-
threne, 1000 tg/g n-decane, 1000 Lg/g n-octane, 50
pg/e o-xylene, and 1700 pg/g acetone. The defined
bacterial inoculum (Inoc) included Pseudomonas putida
(ATCC 33015); Pseudomonas oleovorans (ATCC
29347); and Sphingomonas sp. (ATCC 39723; previ-
ously Flavobacterium sp.). Duplicate subsamples were
sacrificed at 0, 7, and 14 days. Initial samples were
taken immediately before incubation but.immediately
after contamination, when performed.
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Sample analyses consisted of determining the SLB
profile using modified Bligh and Dyer extraction fol-
lowed by fractionation and methylation (Guckert et al.,
1985; White et al., 1979) and PCR/DNA gene probing,
for selected hydrocarbon degradation genes alkB (al!
kane hydroxylase), xy/E (catachol 2,3 dioxygenase),
and pepC (tetrachloro-hydroquinone dehalogenase):

* Primer alkB (Kok et al,, 1989)
forward 5-GTTCTGGATTCCGCTCCAGAGTACG,
base pair 640-664
reverse 5-GCGCTAGTCCGTTCACGATACCCAG,
base pair 997-1021

* Primer xylE (Nakai et al., 1983)
forward 5-TGGCCGCGCGATCTGAAAGGTATGG,
base pair 415-439
reverse 5-GATATCGATIA/CIGA[T/GIGTGTCGGTCATG,
base pair 699-723

* Primer pepC (Orser et al., 1993)
forward 5'-AAGATGCCTGAAGTCAGTCTC, base pair
391-411
reverse 5-AATGGTCCGATCCGGCGACGQG, base pair

1141-1161.

The SLB profile consisted of 64 lipids, listed in
Table 1. The experimental data analyzed in this report
were presented, in part, by White et al. (1997), where
further details on the experimental procedure can be
found.

By using DNA probes for alkB, xylE, and pcpC, -
complementary information on the potential for bio-{
degradation was obtained. The amount of amplifica-
tion product detected by each probe was assumed to
reflect the level of the gene in the original sample,
providing a measure of the potential for bioremediation.
None of the three degradation genes was detected in
the uncontaminated and uninoculated microcosms af-
ter incubation. After incubation, alkB was detected
only in the inoculated and contaminated microcosms;
xylE was observed in all the contaminated and/or in-
oculated microcosms; pcpC was detected in the micro-
cosms that had been inoculated independently of con-
tamination, by the hydrocarbon mixture. The
experimental data leading to these observations were
reported by the authors in White et al. (1997). The
information above can be used to detect both inocula-
tion and contamination from the gene probe results
alone, as summarized in the following logical state-
ments:

P(alkB) = (I) and (HC) (1)

P(xylE) = (I) or (HC) 2)

Almeida, Leung et al. i-



Table 1. SLB components. Fatty acids are referred to according to the nomenclature

described in Ringetberg et al. (1989).

Terminally - Mid-Chain

Branched Branched Branched

Saturates Monoencics Monoenoics Saturates Normal Saturates Eukaryotes

i14:0 15:1wéc i15:1 br15:0 14:0 18:2

i15:0 16:1wc bris:ia bri5:0 15:0 18:2

ais:0 16:1w7c bri15:1b 10mei6:0 16:0 18:2w6

i16:0 16:1w7t i16:1a 11mel6:0 17:0 18:3w3

i17:0 16:1whe i16:1b 12me16:0 18:0 20:4w6

al7:0/1w8c 17:1wéc bt17:1 18me16:0 20:5w3

i19:0 cy17:0 i17:1w7c bri7:0a i20:0

: 17:1 al7:1 br17:0b 20:2w3
18:1woc brig 10mei7:0 20:1wlle
18:1w7¢c 12me17:0/18:2 20:1woc
18:1w7t 10me18:0 20:1w7c
18:1whc 12me18:0 20:0
19:1a 22:0
19:1b 23:0
19;:1wée 24:.0
cy18:0
P(pcpC) = () 3) the three target gene sequences. The samples, sorted

where P = presence above detection limits after
incubation, I = inoculation, and HC = contamina-
tion. A total of 23 samples (four combinations of
two treatments in duplicate, three samples at differ-
ent incubation times, one individual duplicate was
lost) were analyzed for SLBs and were probed for

by treatment and incubation time, were coded SO1
to 523, as defined in Table 2.

Data Analyses

SLB components were normalized with respect to total
lipids and expressed as mole percent. Gene probe re-

Table2. Sample codes (S}, sorted by inoculation {Inoc}), contamination with hydrocarbons

(HC), and days of incubation (D).

Sample Code Microcosm Sample Code Microcosm
S01 Inoc HC DO 812 Inoc No HC DO
S02 Inoc HC DG 513 Inoc No HC DO
S03 Inoc HC D7 S14 Inoc No HC D7
S04 Inoc HC D7 815 tnoc No HC D7
S05 inoc HC D14 516 Incc No HC D14
506 No inoc HC DO 817 Inoc No HC D14
807 No inoc HC Do 818§ No inoc No HC DO
S08 No inoc HC D7 519 No inoc No HC Do
509 No inoc HC D7 820 No inoc No HC D7
S10 No inoc HC D14 S21 No inoc No HC D7
S11 No inoc HC D14 822 No inoc No HC D14
523 No inoc No HC D14

Mapping Changes in Soil Microbial Community Gomposition
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sults were expressed as log(fgDNA/g dry soil}, corre-
sponding to the equivalent total DNA of the strains
from which the oligonucleotide was obtained (refer to
Experimental Procedure above). PCA was performed
using Statistica 5.1 (Statsoft Inc.). ANN analysis was
implemented using BrainCell 2.5 (Promised Land
Tech.) and Matlab 5.0 equipped with the neural net-
work toolbox (MathWorks Inc.). The Togsig equation
was used as a transfer function, and error back-
propagation was used to optimize connection weights.
Full interconnection between neighbor layers was nsed.

ANNSs are assemblies of parallel processing units
that mimic the processing of information by natural
nervous systems. Clustering (Gyllenberg and Koski,
1995) and learning from examples with no a priori
knowledge of causality (Hinton, 1992) are some of the
most important uses of ANNs, Refer to Hagan et al.
(1996) for applied design and implementation of ANNS,
to Haykin (1994) for the theoretical foundations of
ANNSs, and to Montague and Morris (1994) for a re-
view of ANN contributions in biotechnology.

Neonlinear Factor Extraction by ANN

The SLB was treated by an autoassociative neural
network in which the 64-component profile is associ-
ated with itself by feed-forward ANN with three hid-
den layers, the middle layer consisting of only two
nodes. The number of nodes in the neighboring hidden

layers is allowed to change to minimize association
error. Nonlinear factor loadings are obtained by re-
cording the values of the two nodes in the middle
hidden layer (Figure 1). The two hidden nodes corre--
spond to the two coordinates and can be used to re/
cover the original SLB profile within the regression
error.

Nonlinear Mapping by Feed-Forward ANN

The feed-forward ANN approach is similar to nonlin-
ear factor extraction except that the output vector is a
set of variables of interest characterizing the sample,
i.e., incubation time, event of inoculation, event of
contamination, and PCR/gene probe results (Figure 2).
This topology was implemented to generate two-di-
mensional (2D) coordinates representing the nonlinear
association between the chemical profile and the bio-
logically meaningful parameters. Previously, Noble et
al. (1997) had demonstrated that hidden node values
could be used to assess biological variability associ-
ated with the chosen output parameters.

Results and Discussion

Analysis of the SLB data was aimed at tracking
bioremediation status, using the parameters of incuba-
tion time, exposure to contamination, persistence of
selected inocula, and presence of genes for degrada-

( :

feed forward ANN
with backpropagation of errors

o Non-linear _\&7

(2 nodes)

factor ioadiny

SLB profile (64 nodes)

Figure 1. Simplified architecture of autoassociative ANN used fo extract two nonlinear factors from a set of SLB
profiles. The number of nodes in the second and third hidden layers is allowed to change in order to minimize

autoassociation error.

258

Almeida, Leung et alf-



feed forward ANN
with backpropagation of errors

SLB profile {64 nodes)

2D non-linear

/ coordinates (2 nodes)

Vector of target variables
(6 nodes)

Figure 2. Simplified architecture of feed-forward ANN used to extract coordinates for a 2D nonlinear map of SLB
shifts. The number of nodes in the second and third hidden layers is allowed to change o minimize autoassociation

error.

tion of reference hydrocarbons. Extraction of the pri-
mary components by PCA provided a linear map of
SLB shifts (Figure 3). From the factor loadings plotted
in Figure 3, it is clear that most of the initial variance
is associated with inoculation (compare group I to
group II). This was to be expected, as SLB profiles
provide a chemical signature for the entire microbial

community {White et al., 1996). Conversely, shifts in
the signatures of incubated microcosms (days 7 and
14) occur mostly from contamination by hydrocarbons
(HC; compare group III to group IV).

As incubation proceeded, contamination overtook
inoculation as the main factor determining microbial
community composition shifts as assessed by the SLBs.

0.2} 251 inoc./DO
2 (1) not inoc./DO §, b %3‘;@”‘3%‘1‘) nec
0.1 b _
o~ 0
g
u_ "'0.1 o
0.2
0.935 0.04 0.645 0.95 0.955 0.66 0.965 0.97 0.875 0.98
Factor 1

Figure 3. Factor loadings for principal component extraction of SLB. Small circles represent samples (codes
defined in Table 2), and thin arrows join time series for days 0 to 7 and 14. Dashed lines cluster samples as follows:
group | consists of noninoculated microcosms harvested at day 0 (contaminated or not); group Il is as group | but
for inoculated microcosms; group 1l and group IV delimit noncontaminated from contaminated microcosms,

harvested at day 7 and day 14, respectively.
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The variances represented by the two factors are 92%
and 0.5%, respectively, which imply that, by and large,
the greatest differences in lipid signatures occurred
between groups L and IV compared to groups Il and HE

Extracting principal components to map shifts on
the SLBs overlooks dependencies among individual
SLB components. Signature shifts must be coordi-
nated to account for interdependencies among the in-
dividual lipids. However, because PCA considers each
signature component independently, PCA will over-
represent effects that trigger changes in multiple signa-
ture components. To correct for signature interdepen-
dencies, nonlinear component extraction was performed
by autoassociative ANN (Figure 4).

The optimized autoassociative ANN was able to
recover the original signatures solely from two coordi-
nates (the values for the two nodes of the ANN middle
hidden layer, see Materials and Methods) with 4.5%
error, The corresponding two-coordinate map is plot-
ted in Figure 4. Extraction of nonlinear factors is not
sensitive to redundant SLB shifts (correlated SLB com-
ponent shifts), because they can be recovered from the
same combination of factors. Therefore, the distance
between samples is proportional not only to signature
shift but particularly to uncorrelated shift, minimizing
the bias introduced by redundant responses.

As before (Figure 3), contaminated microcosms
sampled after 7 and 14 days of incubation (group
IV) form a distinct cluster (Figure 4). Unlike map-
ping with principal component loadings (Figure 3),

contaminated microcosms that were inoculated are
now distinguishable from those that were uninocu-
lated {groups IVa and IVb in Figure 4, respectively).
Analysis of SLB variability suggests that inocula-
tion has a measurable effect on the community com—lf"
position of contaminated soils after a 2-week incu-
bation period.

The position of an unknown sample in the PCA or
nonlinear factor map is interpreted as suggesting char-
acteristics similar to those of the closest neighbors.
This analysis of map position highlights the fact that
the goal of mapping signatures is to define position not
with respect to signature shift, but rather with respect
to shifts in the sample characteristics. Both mapping
techniques represent a difference of position as a mea-
sure of signature shift. To map shifts in the community
composition that are relevant with regard to a set of
target characteristics, a new approach was followed.
SLB profiles were associated with the set of target
parameters by an ANN with three hidden layers, with
two nodes on the second hidden layer (the coordinates
in a 2D nonlinear map; see Materials and Methods,
Figure 2).

Six target parameters were used to find the 2D
coordinates: incubation time ((/7/14 days); event of
inoculation {0/1); event of contamination (0/1); and
the results for the three gene probes (log(feDNA/gSoil)
of alkB, xylE, and pcpC). Association was accom-
plished with a 4.7% error (Figure 5). Unlike previous
mapping techniques (Figures 3 and 4), the position in ..
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Figure 4. Nonlinear factor exiraction by an autcassociative ANN (4.5% error, 11 nodes in the first and third hidden
layers). The groups defined by principal component analysis (Figure 3, roman numerals} are delimited by dashed

lines.
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Figure 5. Map of SLB shifts with regard to six parameters. Map with identified samples and membership to groups
| through iVa,b (as described in Figure 3) is presented in the upper left corner. The same map is replotted below
with a gray-scale background quantifying the association with target parameters (a through f) with a 4.7% average
error. The corresponding numerical scale is specified in the upper right corner. Lower boundary values for the gene
probe scale correspond to the detection limit. When plotting associated time of ingubation (variable day), the
coordinates with values 1, 4, 7, and 14 were united as lines (a). These lines were reproduced in subsequent plots
(b through f) to highlight incubation time progression from coordinates 1,0 (inoculated, not incubated) and 0,1
{uninoculated, not incubated) toward 0,0 (contaminated, incubated).

the nonlinear map (Figure 5, upper left plot) is associ- correctly derive map coordinates for new samples from
ated with a combination of characteristics (Figures the new SL.B profiles.

Sa-f) rather than with a combination of signature com- The position in the map can be read to extract a
ponents. A successfully trained ANN will be able to numeric prediction about the sample’s target charac-

Mapping Changes in Soil Microbial Community Composition 261



teristics. The lighter background signifies a stronger
association (gray scale, Figure 5). As an example, 501
and 502 (Table 2) are located in a dark area in Figure

Sa, because those signatures come from unincubated.

microcosms, and in a light area in Figure 5b, correctly
signaling for contamination by hydrocarbons. Simi-
larly, inoculation is signaled by a light background for
the same samples in Figure 5¢. As incubation of inocu-
lated HC-treated microcosms progresses from 501 and
S02 to 803 and S04 (day 7) and SO5 (day 14), the
corresponding points in the map correctly retain the
same backgrounds for contamination and inoculation
(Figures 5b and 5¢). The loss of aikB in uncontami-
nated microcosms, the retention of xylE and pcpC
above detection limits, and the emergence of xylE
detection in the natural community of contaminated
microcosms can be followed in Figures 5d, Se, and 51.

The nonlinear map in Figure 5 (upper left plot)
describes SLB shifts with incubation from two starting
points (I and IT} converging toward two endpoints (11T
and TV). The spatial coordinates are such that indi-
vidual samples are included in the correct domains for
the six target parameters (Figure 5a through 5f). Inter-
dependencies among target parameters can now be
identified by superimposition of domains.

The analysis described above is valid for regions
with experimental data for the target parameters. Sig-
natures of new samples will be located automatically
in the map by using the previously trained ANN, If a
new signature is positioned far away from previous
data, its interpretation is only tentative, However, if
information on the {arget parameters is available, map-
ping can be recalculated to incorporate the new infor-
mation, validating a previously uncharted area. In ad-
dition, the opposite analysis can be implemented,
because each coordinate in the map is differently sen-
sitive to individual SLB components. This approach
can be useful to identify biomarkers for particular
combinations of environmental conditions and/or par-
ticular biological community compositions.

Feed-forward ANNs were used to infer target
parameter values directly from SLBs (results not
shown). However, interpretation of results is not as
transparent because interdependencies among target
parameters are not explicit in the connection weights
(Haykin, 1994).

The nonlinear mapping technique is particularly
suited to monitor bioremediation in situ. In addition, it
can be applied to signatures other than the SLB profile
provided that it assesses the global microbial commu-
nity composition, such as restriction length fragment
polymorphisms (RLFPs). The implementation of the
technique requires the simultaneous recording of both
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the signature and the parameters deemed meaningful
for the specific type of contamination (i.e., assessing
exposure to contaminant, rate of removal, and the
potential for bioremediation). After this initial invest-.
ment, an ANN is set as described above. The ANN i{
used to predict values for meaningful parameters based
solely on sample signatures. Typically, obtaining the
signatures is much faster, requires less work, and costs
significantly less than assessing bioremediation di-
rectly. However, predictions made vsing the nonlinear
map should be validated periodically by direct analysis
of bioremediation parameters.

Conclusions

The proximity of signatures as measured by two coor-
dinates does not necessarily imply similarity between
signatures. Instead, it reflects the fact that they occur
in similar combinations of circumstances. To accom-
modate all observed combinations of characteristics, a
coordinate system is arranged by the ANN to mini-
mize proximity between associated events. As a con-
sequence, proximity in the map reflects information
redundancy regarding the target parameters. As more
data become available, fortuitous associations will
become less frequent, rendering the map more accu-
rate and more amenable to interpretation.

The nonlinear mapping technique was developed
to monitor parameters to assess bioremediation status
and the potential for bioremediation without requiring
direct measurements of the parameters. The method i
based on an associative memory concept relying on
ANNGs, an artificial learning technique. The biochemi-
cal lipid signature of biological community composi-
tion was used as a key to infer the values of the target
parameters. The resulting nonlinear map represents
information implicit in the experimental data docu-
menting the association. New signatures can be posi-
tioned by using the ANN to calculate their coordinates.
Additionally, the nonlinear map offers a description of
how target parameters interreact during in situ
bioremediation,
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