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What's up down there? 
David C White*t, Tommy J Phelpst and Tullis C Onstott$ 

The development of careful quality assurance criteria assuring 
freedom from contamination in all aspects of sample recovery 
has opened the window to studies of a fascinating new 
microbial biome in the deep subsurface. Organisms have 
been recovered with unusual metabolic capabilities and a 
chemosynthetic lifestyle independent of the recent surface 
photosynthetically derived energy inputs. The properties 
of the subsurface microbiota are critical when assessing 
aspects such as the utility of burying radioactive waste, the 
remediation of mixtures of organics, metals, and nuclides, 
and the search for life in extreme environments on Earth as 
well as on Mars and other extraterrestrial sites. In addition 
this pioneering work provides a foundation for examining life 
processes in extreme environments, such as the environment 
beneath the ocean floor. 
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Abbreviation 
PLFA phospholipid ester-linked fatty acids 

In t roduct ion 
A general introduction to the history of the search for and 
the exploration of life within the deep subsurface, and 
an introduction to the interdisciplinary Deep Subsurface 
Science Program formulated by Frank J Wobber of 
the United States Department of Energy, was recently 
published [1"°]. The  Deep Subsurface Science Program, 
summarized in two recent publications [2",3°], provided 
the scientific basis for current United States Department 
of Energy programs, such as The  Natural and Accelerated 
Program in Bioremediation Research (NABIR), that utilize 
subsurface microbiota for bioremediation. In this review, 
we summarize the most recent significant advances in the 
understanding of 'what's up down there'. 

Subsurface  microbiota characterization 
The  evidence of microbial life in the deep subsurface has 
been postulated for a very long time, but the microbes that 
were recovered were suspected to be contaminants from 
the conventional biosphere. Interdisciplinary action by a 
team from the Department of Energy Deep Subsurface 
Science Program developed a set of criteria and methods 

by which sampling could be carefully controlled; tracers of 
various sorts, such as bromine ions, perfluorohydrocarbons, 
microbe-sized fluorescent beads, community biologTM 
and signature lipid biomarkers, could be used to monitor 
contamination during the sample recovery process [4°]. 
One of the most powerful tests for contamination is 
community biology and phospholipid fatty acid signature 
analysis [5]. This shows distinct differences between 
microbial communities recovered from drilling muds, 
cuttings, and cores. 

S u b s u r f a c e  c o m m u n i t y  charac ter i za t ion  
Phospholipid ester-linked fatty acids (PLFAs) are an 
excellent measure of the viable or potentially viable 
biomass in a wide range of environments. Viable microbes 
have intact membranes, which contain phospholipids (and 
PLFAs). Total PLFA often differs by three to five orders 
of magnitude between the drilling fluids and cores [5]. 
Cellular enzymes hydrolyze and release the phosphate 
group of phospholipids within minutes to hours following 
cell death [6]. The  composition of the PLFAs and other 
lipids provides an insight into the community composition 
of the in situ microbiota [7"] and, because the lipids 
are modified in specific ways by shifts in the local 
environment, they reflect the physiological/nutritional 
status of the communities [8,9°']. The  ratio of diglyceride 
fatty acids to PLFAs from lysed bacterial cells increases 
markedly with depth and the PLFA profiles can be 
significantly different at different subsurface horizons 
[10°]. Subsurface sediment samples collected in Western 
Washington, South Carolina, Northern New Mexico, and 
Central Idaho from a depth greater than 30m were 
analyzed for PLFAs [11"]. Comparison of the PLFA 
profiles shows that the distribution of the microbial 
community is influenced by the geology of the subsurface: 
78% of the variance in the community PLFA profiles is 
influenced by the lithology (sand/sandstone to clay/basalt) 
and an additional 7% by the permeability of the subsurface 
sedimentary element [11°]. The  structure and chemistry 
of the subsurface clearly affect the microbial community 
composition and activit'> but do the microbes affect the 
rocks? Rates of mineral weathering in aquifers have been 
related to bacterial colonization [12°]. Minerals that are 
not colonized by microbes are not weathered. Does soil 
mineral formation require a microbial biosphere? 

The  presence of dolomite (CaMg carbonate) in the 
geological record but not in present-day environments and 
the inability to generate dolomitic precipitates has been 
a long-standing enigma. It is possible that the 'dolomite 
problem' has a bacterial explanation. Vasconcelos and 
McKenzie [13"] showed that sulfate-reducing bacteria 
in hypersaline anoxic environments in nature and in 
laboratory microcosms can precipitate dolomite. Similar 
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environments in the subsurface could lead to dolomite 
precipitation. 

Arc the minerals precipitated by microbial action dist- 
inguishable from minerals formed by abiotic processes? 
A new finding may indicate that siderite (Fe-carbonate) 
formed by batch grown Geobacter meta//ireducens yields 
oxygen isotope values that are not in thermodynamic 
equilibrium with the oxygen isotopic composition of the 
medium [14"]. Possibly many biomineralization processes 
produce isotopic signatures that are distinct from what 
would be predicted from equilibrium thermodynamics. 
This could make possible the detection of fossil life 
processes in sedimentary rocks where microbes have not 
been detected. 

Metabolic activity in the deep subsurface 
The heterogeneous distribution of microbes in subsurface 
sediments was elegantly demonstrated by trapping 35S 
sulfide on silver foil placed over a freshly fractured core 
face [15"]. Using this technique, it was possible to show 
high sulfide reduction activities in sandstones at the 
interfaces with shales. Nutrients leached from the shales 
probably support microbial communities at interfaces with 
sandstones. The shales have greatly decreased microbial 
activity because of the narrow pore throats restrict the 
access of the microbes to the nutrients [16"',17"']. 

The extant microbiota in the subsurface can be mar- 
velously inactive in thc harsh environment where lifc 
processes are very slow [16"]. Their diversity is great 
enough that they can respond quickly to nutrient if it 
appears. The disturbance artifact of exposure to nutrients 
at many orders of magnitude than found in situ when 
tested in vitro could possibly result in measurements of 
microbial activity more than four-orders of magnitude 
greater than their actual in situ activity. Beware of microbial 
activity determinations based on methods in which 
surface sediments are mixed vigorously with substrates 
in flasks--these arc inappropriate for the subsurface 
environment. Even though nutrients may be present in 
the subsurface they may bc localized in pores with throats 
too small for the microorganisms; therefore, diffusion 
may limit nutrient supply and the subsequent growth of 
entrapped organisms [17"]. The resultant lack of connec- 
tivity in heterogeneously dispersed microbial communities 
is readily demonstrable by significant metabolic activity 
increases with addition of water or crushing sediments 
in the absence of added substrates. Wetting a rock or 
smashing it to aid in sampling can induce such disturbance 
artifacts. 

Subsurface systems selected for their geological conditions 
of hydrological isolation and maximum paleotemperatures 
of 120-1450C, conditions that could preclude microbial 
survival, were shown to contain no viable microbes by 
culture or biomarker analysis [18"']. The sedimentary 
microbial community at the time of deposition has 

been eliminated. Low levels of viable organisms such 
as sulfate-reducing Gram-positive Desulfotomaculum-like 
bacteria and methanogens were isolated from cores recov- 
ered from subsurfaces with hydrologic connectivity and 
lower paleotemperatures [18"]. These subsurface systems 
were recolonized by microorganisms within the past five 
million years after sterilization by the thermal event which 
occurred 40-45 million years ago. In another area careful 
geological analysis of cores from the Taylorsville Basin in 
Virginia indicated that the thermophilic bacteria isolated 
from this site most probably colonized the strata during 
the last major tectonic upheaval in the Jurassic [19"']. 
Iron-reducing thermophilic bacteria forming magnetic 
oxides isolated from the Taylorsville site have the 
temperature tolerance and metabolic activities compatible 
with the extant conditions [20"°]. These conditions and 
these organisms are not found at the surface or at other 
places in thc borehole. Similar anaerobic thermophilic 
organisms were recovered from the Piceance Basin in 
Colorado, which is isolated hydrologically, temporally and 
spatially from the Taylorsvillc Basin, but were entrapped 
under similar conditions. It is clearly possible to be very 
old and survive in the deep subsurface. This evidence 
indicates these microbes have survived in situ for at least 
several to 150 millions of years. 

Metabolic processes in the subsurface 
Rcdox reactions in the subsurface can be thought of 
as a competition for electron donors and accepters that 
can conveniently be understood in terms of hydrogen 
concentrations [21]. The dominant anaerobic metabolic 
processes associated with the highest hydrogen levels are 
methanogenic. Reduction of sulfate, Fe(III), Mn(IV), and 
nitrate is associated with progressively lower hydrogen 
concentrations. Iron is one of the most abundant metals 
in the earth and increasingly iron is thought to play 
a key role in the subsurface microbial metabolism. A 
wide variety of organisms is now known to utilize 
iron reduction as a terminal electron accepter for the 
oxidation of organic matter [22"]. Anaerobic oxidations 
can occur in the subsurface. Nitrate can be involved in 
an anaerobic iron cycle so the presence of oxygenated 
water is no longer required for iron oxidation [23°]. This 
may have important implications in the precipitation of 
radionuclides at anaerobic sites as oxidation can greatly 
increase solubility and mobility for nuclides like U, Tc for 
example. 

One of the most exciting prospects in the research of 
subsurface microbial activities is the discovery of 'shuttles' 
whereby the electron accepting moieties localized in the 
subsurface pores with throats too narrow for bacteria 
to enter can transfer electrons between bacteria and 
the oxidized metals located in the pores. Lovely et al. 
[24"'] demonstrated that humic substances, which are 
ubiquitous in the subsurface, can be used by some 
microbes as an electron accepter for the anaerobic 
oxidation of organic compounds and hydrogen. These 
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humic substances also reduce less accessible electron 
acceptors such as insoluble Fe(III) oxides. The fact 
that 2,6-anthroquinone disulfonate (a model for quinones 
found in humates/humic acid) efficiently shuttles electrons 
between hydrogen, Fe(III) oxides, and can serve as a 
terminal electron acceptor suggests a mechanism for these 
humic substance stimulated activities. The humic 'shuttle' 
could be one of the most important features of anaerobic 
subsurface activities. 

Stevens and McKinley [25] reported the surprising find 
of a basalt-based ecosystem in the deep subsurface that 
is independent of solar energy or other surficial energy 
inputs. This anaerobic subsurface lithoautotrophic system 
is able to sustain viable microbial ecosystems hundreds of 
meters below the surface and has implications for life any- 
where there is liquid water and compatible temperatures. 
Evidence for the ecosystem included methane depleted 
in 13C, the generation of considerably more hydrogen 
than could be accounted for by the organic carbon, the 
high ratio of autotrophic to heterotrophic bacteria, the 
generation of hydrogen from crushed basalt, and microbial 
growth in microcosms containing the basalt [25]. 

Granitic rocks may also have a deep subsurface microbiota. 
Microfossils found in calcite in a water-conducting fracture 
of 1800 million year old granitic rock from 207 m below sea 
level were analysed for 13C and 180 [26"]. The analysis 
showed the microfossils were enriched in carbon but 
low in 13C suggesting strongly that the microbes were 
once metabolically active. The detection of ancient life in 
fissures suggests that modern life in these fractures could 
be intrinsic. 

Even the sediments 150m below the deep sea surface 
may harbor an active microbiota [27"]. The first evidence 
that microbial processes may influence alteration of the 
ocean crust has come from the correlation between glass 
alteration features (sites of the transformation between 
compressed sediment and basalt) and the presence of 
particulate nucleic acid [28"]. As yet, PCR of the isolated 
DNA extracts has not confirmed that the microbes 
are indigenous to the volcanic rock. The procedure 
that Giovannoni et al. [28 °] developed for correlating 
mineralogy with microbial activity at the microscopic 
scale may represent a new technique applicable in the 
subsurface. We look forward to-definitive analyses of 
deep-sea basalts with appropriate quality assurance to 
establish that the isolated microbes are indeed the extant 
microbiota. 

Uti l izat ion of subsurface microbiota 
The deep subsurface microbiota can be manipulated by 
judicious nutrient application to stimulate bioremediation. 
Addition of gaseous triethyl phosphate with methane 
and nitrous oxide to horizontal wells surrounding a 
trichloroethylene contamination site stimulated the for- 
tuitous breakdown of trichloroethylene by subsurface 
methanotrophic microbes [29°]. These manipulations 

added 7% to the cost of the contamination clean up 
operation but resulted in degradation of 40% more of the 
contaminant as indicated by increased chloride, increased 
methanotrophic populations and decreased contaminants 
in the subsurface [29°]. Bioremediation may require 
augmentation with nonindigenous bacteria in addition to 
the nutrients. 

Augmentation of the subsurface microbiota with non- 
indigenous bacteria could overcome some of the prob- 
lems associated with hydrogeological and geochemical 
heterogeneities in limiting bioremediation effectiveness. 
To establish effectiveness of bacterial augmentation in the 
subsurface, tracer bacteria were selected with low adhesion 
properties so they could move freely in the subsurface 
and with 'labels' of nonclinical antibiotic resistance and 
by growth with nonradioactive 13C glucose mass label 
[30°]. The detection of 13C labeled bacteria after recovery 
from subsurface inoculation proved the most sensitive 
and discontinuities between the bromide non-reactive 
tracer, which moves freely, and the bacteria transport, 
which is effected by adhesion and pore throat size, were 
readily demonstrated. Initial results indicate that most 
of the bacteria are adsorded at the sites of injection 
but subpopulations can move rapidly. In addition to the 
physical and chemical heterogeneities of the aquifer, a 
biological heterogeneity must also be considered when 
modeling bacterial transport. 

Impl icat ions for extraterrestrial  life 
The report by McKay et al. [31 °] that the nanometer 
scale structures on the Martian meteorite recovered in 
Antarctica might indicate life stirred up an enormous 
excitement. Researchers focused their interest on the 
sampling of the Martian subsurface for homologues of the 
microbes that are found in the fractured layers of the 
Columbia river basalts. 

From this brief review the iron-reducing bacteria, par- 
ticularly those recently detected that are thermophiles, 
may have been of major importance in the ancient Earth 
and could thus have been important on our brother 
planet Mars. Thermophilic dissimilatory iron reduction 
with the metal as the terminal electron acceptor was 
demonstrated recently in anaerobic Gram-positive bacteria 
[32 °] related to the Bacillus-Clostridium subphylum. This 
organism Thermoterrabacterium ferrireducens joins a group 
of bacteria that includes the anaerobic Bacillus infernus, 
which reduces Fe(III) with lactate and formate, and the 
aerobic archeon Sulfolobus acidocaldarius, which utilizes 
Fe(III) and elemental sulfur. T. ferrireducens is the 
first dissimilatory iron reducer directly isolated from a 
terrestrial geothermal area and it strongly suggests that 
anaerobic electron transport could be an ancient metabolic 
process. 

Conclusions 
With the quality assurance of tracers and microbial 
community and acti'vity assessments it is now possible 



What's up down there? White, Phelps and Onstott 289 

to sample the extant microbiota of the deep subsurface. 
So what is going on down there? The microbes may 
be truly ancient and capable of remarkable feats of 
perseverance and starvation. Thermophilic dissimilatory 
iron reduction with 'shuttles' to bring electron donors 
to the microbes may be a very important life sustaining 
process. This microbiota can be manipulated and traced 
through geologic heterogeneities. Microbes can move and 
modify the rocks with their metabolism. The ocean floor 
sediments and crest may be a new frontier for exploring 
the subsurface biosphere, particularly if hydrogen can be 
generated abiotically from basalts at rates compatible with 
life so that they may have an energy source independent 
of the surface. Nothing we have learned from the 
terrestrial subsurface discourages us from searching for 
extraterrestrial microbial life. 
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