What's up down there?
David C White*†, Tommy J Phelps† and Tullis C Onstott‡

The development of careful quality assurance criteria assuring freedom from contamination in all aspects of sample recovery has opened the window to studies of a fascinating new microbial biome in the deep subsurface. Organisms have been recovered with unusual metabolic capabilities and a chemoautotrophic lifestyle independent of the recent surface photosynthetically derived energy inputs. The properties of the subsurface microbiota are critical when assessing aspects such as the utility of burying radioactive waste, the remediation of mixtures of organics, metals, and nuclides, and the search for life in extreme environments on Earth as well as on Mars and other extraterrestrial sites. In addition this pioneering work provides a foundation for examining life processes in extreme environments, such as the environment beneath the ocean floor.

Introduction
A general introduction to the history of the search for and the exploration of life within the deep subsurface, and an introduction to the interdisciplinary Deep Subsurface Science Program formulated by Frank J Webber of the United States Department of Energy, was recently published [1*]. The Deep Subsurface Science Program, summarized in two recent publications [2*,3*], provided the scientific basis for current United States Department of Energy programs, such as The Natural and Accelerated Bioremediation Research (NABIR), that utilize subsurface microbiota for bioremediation. In this review, we summarize the most recent significant advances in the understanding of 'what's up down there'.

Subsurface microbiota characterization
The evidence of microbial life in the deep subsurface has been postulated for a very long time, but the microbes that were recovered were suspected to be contaminants from the conventional biosphere. Interdisciplinary action by a team from the Department of Energy Deep Subsurface Science Program developed a set of criteria and methods by which sampling could be carefully controlled; tracers of various sorts, such as bromine ions, perfluorohydrocarbons, microbe-sized fluorescent beads, community biology and signature lipid biomarkers, could be used to monitor contamination during the sample recovery process [4*]. One of the most powerful tests for contamination is community biology and phospholipid fatty acid signature analysis [5]. This shows distinct differences between microbial communities recovered from drilling muds, cuttings, and cores.

Subsurface community characterization
Phospholipid ester-linked fatty acids (PLFAs) are an excellent measure of the viable or potentially viable biomass in a wide range of environments. Viable microbes have intact membranes, which contain phospholipids (and PLFAs). Total PLFA often differs by three to five orders of magnitude between the drilling fluids and cores [5]. Cellular enzymes hydrolyze and release the phosphate group of phospholipids within minutes to hours following cell death [6]. The composition of the PLFAs and other lipids provides an insight into the community composition of the in situ microbiota [7*] and, because the lipids are modified in specific ways by shifts in the local environment, they reflect the physiological/nutritional status of the communities [8,9*]. The ratio of diglyceride fatty acids to PLFAs from lysed bacterial cells increases markedly with depth and the PLFA profiles can be significantly different at different subsurface horizons [10*]. Subsurface sediment samples collected in Western Washington, South Carolina, Northern New Mexico, and Central Idaho from a depth greater than 30 m were analyzed for PLFAs [11*]. Comparison of the PLFA profiles shows that the distribution of the microbial community is influenced by the geology of the subsurface: 78% of the variance in the community PLFA profiles is influenced by the lithology (sand/sandstone to clay/basalt) and an additional 7% by the permeability of the subsurface sedimentary element [11*]. The structure and chemistry of the subsurface clearly affect the microbial community composition and activity, but do the microbes affect the rocks? Rates of mineral weathering in aquifers have been related to bacterial colonization [12*]. Minerals that are not colonized by microbes are not weathered. Does soil mineral formation require a microbial biosphere?

The presence of dolomite (CaMg carbonate) in the geological record but not in present-day environments and the inability to generate dolomitic precipitates has been a long-standing enigma. It is possible that the 'dolomite problem' has a bacterial explanation. Vasconcelos and McKenzie [13*] showed that sulfatereducing bacteria in hypersaline anoxic environments in nature and in laboratory microcosms can precipitate dolomite. Similar
environments in the subsurface could lead to dolomite precipitation.

Are the minerals precipitated by microbial action distinguishable from minerals formed by abiotic processes? A new finding may indicate that siderite (Fe-carbonate) formed by batch grown Geobacter metallireducens yields oxygen isotope values that are not in thermodynamic equilibrium with the oxygen isotopic composition of the medium [14°]. Possibly many biomineralization processes produce isotopic signatures that are distinct from what would be predicted from equilibrium thermodynamics. This could make possible the detection of fossil life processes in sedimentary rocks where microbes have not been detected.

Metabolic activity in the deep subsurface

The heterogeneous distribution of microbes in subsurface sediments was elegantly demonstrated by trapping 35S sulfide on silver foil placed over a freshly fractured core face [15°]. Using this technique, it was possible to show high sulfide reduction activities in sandstones at the interfaces with shales. Nutrients leached from the shales probably support microbial communities at interfaces with sandstones. The shales have greatly decreased microbial activity because of the narrow pore throats restrict the access of the microbes to the nutrients [16°, 17°].

The extant microbiota in the subsurface can be marvelously inactive in the harsh environment where life processes are very slow [16°]. Their diversity is great enough that they can respond quickly to nutrient if it appears. The disturbance artifact of exposure to nutrients at many orders of magnitude than found in situ when tested in vitro could possibly result in measurements of microbial activity more than four-orders of magnitude greater than their actual in situ activity. Beware of microbial activity determinations based on methods in which surface sediments are mixed vigorously with substrates in flasks—these are inappropriate for the subsurface environment. Even though nutrients may be present in the subsurface they may be localized in pores with throats too small for the microorganisms; therefore, diffusion may limit nutrient supply and the subsequent growth of entrapped organisms [17°]. The resultant lack of connectivity in heterogeneously dispersed microbial communities is readily demonstrable by significant metabolic activity increases with addition of water or crushing sediments in the absence of added substrates. Wetting a rock or smashing it to aid in sampling can induce such disturbance artifacts.

Subsurface systems selected for their geological conditions of hydrological isolation and maximum paleotemperatures of 120-145°C, conditions that could preclude microbial survival, were shown to contain no viable microbes by culture or biomarker analysis [18°]. The sedimentary microbial community at the time of deposition has been eliminated. Low levels of viable organisms such as sulfate-reducing Gram-positive Desulfovomaculum-like bacteria and methanogens were isolated from cores recovered from subsurfaces with hydrologic connectivity and lower paleotemperatures [18°]. These subsurface systems were recolonized by microorganisms within the past five million years after sterilization by the thermal event which occurred 40-45 million years ago. In another area careful geological analysis of cores from the Taylorsville Basin in Virginia indicated that the thermophilic bacteria isolated from this site most probably colonized the strata during the last major tectonic upheaval in the Jurassic [19°]. Iron-reducing thermophilic bacteria forming magnetic oxides isolated from the Taylorsville site have the temperature tolerance and metabolic activities compatible with the extant conditions [20°]. These conditions and these organisms are not found at the surface or at other places in the borehole. Similar anaerobic thermophilic organisms were recovered from the Piceance Basin in Colorado, which is isolated hydrologically, temporally and spatially from the Taylorsville Basin, but were entrapped under similar conditions. It is clearly possible to be very old and survive in the deep subsurface. This evidence indicates these microbes have survived in situ for at least several to 150 millions of years.

Metabolic processes in the subsurface

Redox reactions in the subsurface can be thought of as a competition for electron donors and acceptors that can conveniently be understood in terms of hydrogen concentrations [21]. The dominant anaerobic metabolic processes associated with the highest hydrogen levels are methanogenic. Reduction of sulfate, Fe(III), Mn(IV), and nitrate is associated with progressively lower hydrogen concentrations. Iron is one of the most abundant metals in the earth and increasingly iron is thought to play a key role in the subsurface microbial metabolism. A wide variety of organisms is now known to utilize iron reduction as a terminal electron acceptor for the oxidation of organic matter [22°]. Anaerobic oxidations can occur in the subsurface. Nitrate can be involved in an anaerobic iron cycle so the presence of oxygenated water is no longer required for iron oxidation [23°]. This may have important implications in the precipitation of radionuclides at anaerobic sites as oxidation can greatly increase solubility and mobility for nuclides like U, Te for example.

One of the most exciting prospects in the research of subsurface microbial activities is the discovery of 'shuttles' whereby the electron accepting moieties localized in the subsurface pores with throats too narrow for bacteria to enter can transfer electrons between bacteria and the oxidized metals located in the pores. Lovely et al. [24°] demonstrated that humic substances, which are ubiquitous in the subsurface, can be used by some microbes as an electron acceptor for the anaerobic oxidation of organic compounds and hydrogen. These
humic substances also reduce less accessible electron acceptors such as insoluble Fe(III) oxides. The fact that 2,6-anthraquinone disulfonate (a model for quinones found in humates/humic acid) efficiently shuttles electrons between hydrogen, Fe(III) oxides, and can serve as a terminal electron acceptor suggests a mechanism for these humic substance stimulated activities. The humic 'shuttle' could be one of the most important features of anaerobic subsurface activities.

Stevens and McKinley [25] reported the surprising find of a basalt-based ecosystem in the deep subsurface that is independent of solar energy or other surficial energy inputs. This anaerobic subsurface lithoautotrophic system is able to sustain viable microbial ecosystems hundreds of meters below the surface and has implications for life anywhere there is liquid water and compatible temperatures. Evidence for the ecosystem included methane depleted in 13C, the generation of considerably more hydrogen than could be accounted for by the organic carbon, the high ratio of autotrophic to heterotrophic bacteria, the generation of hydrogen from crushed basalt, and microbial growth in microcosms containing the basalt [25].

Granitic rocks may also have a deep subsurface microbiota. Microfossils found in calcite in a water-conducting fracture of 1800 million year old granitic rock from 207 m below sea level were analysed for 13C and 18O [26°]. The analysis showed the microfossils were enriched in carbon but low in 13C suggesting strongly that the microbes were once metabolically active. The detection of ancient life in fissures suggests that modern life in these fractures could be intrinsic.

Even the sediments 150 m below the deep sea surface may harbor an active microbiota [27°]. The first evidence that microbial processes may influence alteration of the ocean crust has come from the correlation between glass alteration features (sites of the transformation between compressed sediment and basalt) and the presence of particulate nucleic acid [28°]. As yet, PCR of the isolated DNA extracts has not confirmed that the microbes are indigenous to the volcanic rock. The procedure that Giovannoni et al. [28°] developed for correlating mineralogy with microbial activity at the microscopic scale may represent a new technique applicable in the subsurface. We look forward to definitive analyses of deep-sea basalts with appropriate quality assurance to establish that the isolated microbes are indeed the extant microbiota.

Utilization of subsurface microbiota
The deep subsurface microbiota can be manipulated by judicious nutrient application to stimulate bioremediation. Addition of gaseous triethyl phosphate with methane and nitrous oxide to horizontal wells surrounding a trichloroethylene contamination site stimulated the fortuitous breakdown of trichloroethylene by subsurface methanotrophic microbes [29°]. These manipulations added 7% to the cost of the contamination clean up operation but resulted in degradation of 40% more of the contaminant as indicated by increased chloride, increased methanotrophic populations and decreased contaminants in the subsurface [29°]. Bioremediation may require augmentation with nonindigenous bacteria in addition to the nutrients.

Augmentation of the subsurface microbiota with nonindigenous bacteria could overcome some of the problems associated with hydrogeological and geochemical heterogeneities in limiting bioremediation effectiveness. To establish effectiveness of bacterial augmentation in the subsurface, tracer bacteria were selected with low adhesion properties so they could move freely in the subsurface and with ‘labels’ of nonclinical antibiotic resistance and by growth with nonradioactive 13C glucose mass label [30°]. The detection of 13C labeled bacteria after recovery from subsurface inoculation proved the most sensitive and discontinuities between the bromide non-reactive tracer, which moves freely, and the bacteria transport, which is effected by adhesion and pore throat size, were readily demonstrated. Initial results indicate that most of the bacteria are adsorbed at the sites of injection but subpopulations can move rapidly. In addition to the physical and chemical heterogeneities of the aquifer, a biological heterogeneity must also be considered when modeling bacterial transport.

Implications for extraterrestrial life
The report by McKay et al. [31°] that the nanometer scale structures on the Martian meteorite recovered in Antarctica might indicate life stirred up an enormous excitement. Researchers focused their interest on the sampling of the Martian subsurface for homologues of the microbes that are found in the fractured layers of the Columbia river basalts.

From this brief review the iron-reducing bacteria, particularly those recently detected that are thermophiles, may have been of major importance in the ancient Earth and could thus have been important on our brother planet Mars. Thermophilic dissimilatory iron reduction with the metal as the terminal electron acceptor was demonstrated recently in anaerobic Gram-positive bacteria [32°] related to the Bacillus-Coliostium subphylum. This organism Thermoterrabacterium ferrireducens joins a group of bacteria that includes the anaerobic Bacillus infernus, which reduces Fe(III) with lactate and formate, and the aerobic archon Sulfolobus acidocaldarius, which utilizes Fe(III) and elemental sulfur. T. ferrireducens is the first dissimilatory iron reducer directly isolated from a terrestrial geothermal area and it strongly suggests that anaerobic electron transport could be an ancient metabolic process.

Conclusions
With the quality assurance of tracers and microbial community and activity assessments it is now possible
to sample the extant microbiota of the deep subsurface. So what is going on down there? The microbes may be truly ancient and capable of remarkable feats of perseverance and starvation. Thermophilic dissimilatory iron reduction with ‘shuttles’ to bring electron donors to the microbes may be a very important life sustaining process. This microbiota can be manipulated and traced through geologic heterogeneities. Microbes can move and modify the rocks with their metabolism. The ocean floor sediments and crest may be a new frontier for exploring the subsurface biosphere, particularly if hydrogen can be generated abiotically from basalts at rates compatible with life so that they may have an energy source independent of the surface. Nothing we have learned from the terrestrial subsurface discourages us from searching for extraterrestrial microbial life.

Acknowledgements

We wish to dedicate this review to FJ Wobber, in appreciation of his successful stewardship of the Deep Subsurface Science Program. This study was partially supported by grants from the Assessment Program Leadership in the Natural and Accelerated Bioremediation Program, of the Office of Environmental Research (Grant DE-FC02-96ER62278); the National Institute for Global Environmental Change, South East Regional Center, Tuscaloosa, AL, of the Department of Energy (Grant 94CO7001S); Strategic Environmental Research and Development Program (Grant SY887-11); National Science Foundation DOE/EPA/NOS/ONR Joint Program on Bioremediation (Grant DEB-9701018); and National Science Foundation, LEXEN: Collaborative Research; a window into extreme environments of deep subsurface microbial communities (Grant EAR-9714281).

References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:
• of special interest
• of outstanding interest

This is an excellent nontechnical overview of the history and ecology of the subsurface microbiota.

This book is a collection of research on the deep subsurface covering three sections: "Considerations for Sampling; Microbial Ecology and Related Methods; and Applications".

Edited proceedings of the ISSM 1996 conference in Davos Switzerland, with 36 reviewed papers summarizing the research into the subsurface microbiology.

This is a review of methods of core and ground water recovery and the particular, soluble and gaseous tracers that can be utilized for accurately measuring the contamination within recovered samples.

As yet unexplained shift in oxygen isotopic values in sideker generated by GeoBacter metallireducens from thermodynamic equilibrium of the medium may signal that many biomineralization processes produce isotopic signatures different from those predicted.

A review of the application of the signature lipid biomarker technology to sample quality assurance and microbial ecology of the extant subsurface microbial communities.

This study shows that there are microbes there is weathering and where the microbes are absent surfaces were not weathered.

This work suggests sulfate-reducing bacteria could be a solution to the dolomite problem.

An as yet unexplained shift in oxygen isotopic values in siderite generated by GeoBacter metallireducens from thermodynamic equilibrium of the medium may signal that many biomineralization processes produce isotopic signatures different from those predicted.

Silver foil was utilized to demonstrate two-dimensional heterogeneity of sulfate reduction by trapping sulfide. The highest sulfide reduction activities were found in sandstones alulating organic shales, indicating spatially discrete microbial ecosystems fueled by nutrients deposited in surrounding shales which are themselves incapable of supporting a microbial community.

The capacity of the subsurface microbiota to starve for long periods of time yet spring into action when trace of nutrients appear is documented in this comprehensive review.

It is not pore size but as pore throat size that is important for microbial transport and diffusion of nutrients.

Subsurface samples recovered from the Piscenance Basin of Western Colorado showed that geological conditions constraining transport prevented recolonization of the rock samples. Measurable but low biomass was present where some traces of microbes were discovered, suggesting a phylogenetic relationship to Desulfotomaculum that migrated into the rock formation in the past five million years.

The occurrence of thermophilic bacteria was shown to correlate with geo-
chemical data as a testable hypothesis of long term entrapment and survival
of organisms suited to the environment.

Thermophilic (45°C-75°C) bacteria that reduce amorphous iron (III)-oxy-
hydroxides to magnetic iron oxides were recovered from the deep subsurface
in basins isolated from the surface for millions of years.

22. Lovely DR: Microbial Fe(III) reduction in subsurface
This is a short highly referenced review of the phylogenetic relationships and
activities of dissimilatory iron-reducing bacteria from the subsurface.

23. Straub KL, Benz M, Schink B, Widdel F: Anaerobic, nitrate-
dependent microbial oxidation of ferrous iron. Appl Environ
This is a first report of anaerobic nitrate-reducing bacteria capable of oxidiz-
ing ferrous iron.

24. Lovely DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward
JC: Humic substances as electron acceptors for microbial
This paper demonstrates the ability of humic acid to couple dissimilatory
iron reducers like Geobacter spp. and Shewanella spp. with hydrogen and
organic compounds as well as relatively inaccessible Fe(III) oxides.

25. Stevens TO, McKinley JP: Lithotrophic microbial ecosystems in

O: Evidence of ancient life at 207 m depth in a granitic aquifer.
The finding of 13C-depleted, carbon-enriched microfossils in a deep granite
fissure suggests that even the granite shields have a microbiota and have
had it for a very long time.

27. Wellbury P, Goodman K, Barth T, Cragg BA, Barones SP, Parkes
• RJ: Deep marine biosphere fueled by increasing organic-
This is a report of microbial activity 150 m below the deep sea floor.

the Ocean Drilling Program: Scientific Results. Edited by Alt
Science Foundation; 1996:207-213.
Correlations between glass alteration features and particulate nucleic acids
in deep sea basalt were demonstrated.

dosing on subsurface methanotrophic populations and
Addition of gaseous nutrients through horizontal wells surrounding a
trichloroethylene contamination plume stimulated the target microbial com-
munity in the subsurface and increased the bioremediation significantly. This
technology has been widely utilized for other contaminants.

T, Griffin T, Majer E, Wilson J: Preliminary observations on
bacterial transport in coastal plain aquifer. FEMS Microbiol Rev
This is the initial report on the interdisciplinary study of bacterial transport
with the utilization of 13C-labeled bacteria as tracers in modeling the effects
of heterogeneity on bacterial transport.

31. McKay DS, Gibson EK, Thomas-Keperta KL, Vail H, Romanek CS,
• Clemett SJ, Chirillo XDF, Maechling CR, Zare RN: Search for
past life on Mars: possible relic biogenic activity in Martian
Nanostructures and polynucleararomatics found on a meteorite from Mars
might have had a biological origin. Perhaps, but is certainly worth a trip to
Mars to see.

32. Slobodkin A, Reysenbach A-L, Strutz N, Dreier M, Wiegel
• W: Thermoterrabacterium ferrireducens gen nov, sp. nov., a thermophilic
anaerobic dissimilatory Fe (III) reducing-
bacterium from a continental hot spring. Int J Syst Bacteriol
1997, 47:541-547.
This paper reports the first direct isolation of a thermophilic dissimilatory iron-
reducing bacterium.