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Abstract

The determination of volumes and interface areas from confocal laser scanning microscopy (CLSM) images requires the
identification of component objects by segmentation. An automated method for the determination of segmentation thresholds
for CLSM imaging of biofilms was developed. The procedure, named objective threshold selection (OTS), is a three-dimen-
sional development of the approach introduced by the popular robust automatic threshold selection (RATS) method. OTS is
based on the statistical properties of local gray-values and gradients in the image. By characterizing the dependence between
avolumetric feature and the intensity threshold used for image segmentation, the former can be determined with an arbitrary
confidence level, with no need for user intervention. The identification of an objective segmentation procedure renders the
possibility for the full automation of volume and interfacial area measurement. Images from two distinct biofilm systems,
acquired using different experimental techniques and instrumental setups were segmented by OTS to determine biofilm
volume and interfacial area. The reliability of measurements for each case was analyzed to identify optimal procedure for
image acquisition. The automated OTS method was shown to reproduce values obtained manually by an experienced
operator. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction biofilms due to its non-invasive and non-destructive
character. Series of optical cross-sections, collected

Confocal laser scanning microscopy (CLSM) is at different depthsin order to scan a given volume of
the method of choice to capture structure of live interest, provide extensive three-dimensional struc-

tural data. Time-course analysis of hiofilm morpho-
genesis is also possible using CLSM, since it alows
monding author. Department of Biometry and Epidemi- fF)r nqn-degtructlve and rgpetltl\_/e visualization of
ology, Medical University of South Carolina, 135 Rutledge Av- live biological structures in their natural hydrated
enue, PO Box 250551, Charleston, SC 29425, USA. state (Lawerence et al., 1991). A number of struc-
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ture/function studies of biofilm formation have been
published over the past decade that use qualitative
anaysis of CLSM images (Lawerence et a., 1991;
DeBeer et a., 1994; Lawerence et a., 1994; Caldeira
et a., 1999; Sternberg et a., 1999; Wood et d.,
1998; Jayaraman et al., 1998). Quantitative image
analysis has also been used, but has so far been
either limited to two dimensions (Yang et al., 1999,
Hermanowicz et al., 1995) or required operator-de-
fined calibration (Jayaraman et d., 1998; Hermanow-
icz et al., 1995; Kuehn et al., 1998; Stoodley et a.,
1998; Christensen et al., 1998; Moller et a., 1998).
The full potential of CLSM for quantitative study of
biofilms has not been fully automated due to two
main factors: the large computational requirements
for the processing of three-dimensional data and the
unavailability of adequate mathematical solutions and
the corresponding computational tools.

Biofilm structural parameters such as distribution
of density and surface shape are well recognized in
being of key importance for the stability and perfor-
mance of biofilm reactors (Picioreanu et al., 1997).
Nevertheless, biofilm processes are typically mod-
eled under the assumption that these are uniform cell
aggregates that homogeneoudly cover a solid surface
(Gjatema et a., 1994). More recently, efforts have
been made to model biofilm growth using methods
that observe structural heterogeneity. Discrete meth-
ods (Picioreanu et al., 1997; Wimpenny and Colas-
anti, 1997) and individual-based modeling (Kreft et
al., 1998) have been successfully used to describe
macroscopic scale morphology of biofilms based on
small-scale interactions. However, the model intrin-
sic parameters, such as individual cell properties and
reactive yields, are usually obtained from planktonic
culture experiments in spite of the recognition that
planktonic cell culture characteristics do not extrapo-
late to biofilm systems (Costerton et al., 1994).
Therefore, the development of reliable predictive
models would greatly benefit from information ac-
quired by time resolved direct observation of biofilms
in their naturally hydrated state, as enabled by CLSM
(Lawerence et al., 1991).

In a recent report on quantitative analysis of
CLSM images of biofilms, Yang et al. (1999) distin-
guished measurable structural parameters as either
textural or areal. According to this classification,
“the textural parameters describe the microscale het-

erogeneity of the image and the areal parameters
describe the morphological relationship between the
size orientation and shape of surface features”. Ac-
cordingly, textural parameters are obtained directly
from the gray scale image, whereas, areal parameters
are measured from a binary image, obtained by
segmentation of the gray scale original. That work
focused on two-dimensional quantitative analysis. In
the present work, the notation introduced by Yang et
al. (1999) is extended to three dimensions to identify
a fully automated biofilm image analysis procedure.
In addition, volume and interfacial area were mea-
sured from binary three-dimensional images that,
analogously, will be hereby designated as volumetric
parameters.

CLSM data are acquired in the form of series of
optical cross-sections, i.e. two-dimensional digital
images collected in series that scan a given volume
a seguential vertical depths. Each digital image is
composed by individual discrete elements, pixels,
evenly spaced on a rectangular grid. A CLSM scan
composed by several two-dimensional images placed
at different heights constitutes a three-dimensional
grid. The discrete elements that compose the three-
dimensional images are called voxels, i.e. volumetric
pixels. Segmentation is the process of assigning the
image voxels to recognizable components, such as
cellular material, phenanthrene crystals or extracellu-
lar polymers, producing a binary image for each of
them (Castleman, 1996). Direct thresholding has been
the most widely used segmentation method, with
threshold levels being selected visually by an opera-
tor (Yang et al., 1999; Hermanowicz et al., 1995;
Kuehn et a., 1998). The widespread use of visual
selection reflects the lack of reliable automated
methods for determination of threshold levels, and is
a serious obstacle to normalization and automation
of CLSM for quantitative analysis. An automated
method for determination of a threshold level is
proposed here. The method introduced in this report,
objective threshold selection (OTS), uses a statistical
approach similar to that of robust automated thresh-
old selection (RATS) method (Kitler et al., 1985),
combined with the analysis of threshold distributions
obtained at different positions in the specimen. OTS
allows the determination of a median threshold level,
more reliable than the one computed using a simple
three-dimensional extension of the RATS algorithm,
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with the additional advantage of identifying confi-
dence intervals for the estimate.

2. Materials and methods

Two different biofilm systems were used to gen-
erate image time series for OTS analysis. The first
example consisted of a multiple species denitrifying
flow-through cell system. For the second example, a
pure culture biofilm using phenanthrene crystals as a
carbon source was used.

2.1. Mixed culture denitrifying biofilm growth

A mixed culture biofilm was grown in a flowcell
reactor using a mixed species inoculum following
methodology described previousy (Xavier et a.,
submitted for publication). A synthetic growth me-
dium was used to provide conditions suitable for
denitrification. The inoculum was obtained by re-
peated enrichment culture obtained from a laboratory
reactor operated under denitrifying conditions. Inocu-
lation of the flowcell was performed by re-circula-
tion of the inoculum for 1 h. After this period, the
re-circulation loop was opened and regular operation
of the system was assumed, i.e., continuous feeding
of the flowcell with fresh cell-free medium at a
constant flow rate. Liquid culture medium provided
suitable conditions for denitrification: 5.0 g |2
KNO,, 3.0 KCH,COO0, 1.52 gl * KH,PO,, 250 g
I~* Na,HPO,, 0.1 MgSO,-7H,0, 025 g I*
(NH,),S0,, 005 g I™* CaCl,, 2 mg 1" FeSO, -
7H,0, 5 mg/ml EDTA, 1 mg |~* ZnSO, - 7H,0,
0.3mg|~* MnCl,-4H,0, 3 mg | ! H;BO;, 2 mg
=t CoCl, 6H,0, 0.1 mg I~* CuCl,, 0.2 mg |*
NiCl, 6H,0 and 0.3 mg |~* NaMoO, - 2H,0. The
flowcell reactor was build out of two microscope
cover dips and costume-made silicone pieces. Sili-
cone tubing was used. For medium inflow, a dis-
placement pump (Watson-Marlow) was used and an
approximate linear velocity of 18 flow rate of mi
min~! (laminar flow).

2.2. Image acquisition for denitrifying biofilm

The biofilm was stained with 0.1 ml of a 6-pl
ml ! agueous solution of Syto 9 (Molecular Probes,
Eugene, OR, USA), injected in the inflow stream 15
min prior to each image acquisition. Medium flow
was halted for the 15 min following insertion of the

stain to allow the dye to penetrate the biofilm. Syto 9
is a non-specific nucleic acid stain, with excitation/
emisson maxima of 480-500 nm. The stained
biofilm was observed using a Leica TCS-NT laser
confocal microscope. The microscope was operated
as follows: dual excitation (488 and 568 nm), dual
emission (530,30 BP into channel 1 to record Syto
9 fluorescence and 650 LP into channel 2 for pro-
pidium iodide fluorescence), 40 X 1.0 NA oil im-
mersion lens at an Airy disc setting of 0.9. Prior
to imaging, PMT settings in both channels were
adjusted interactively, such that the RGB overlay
(live scan) approximated the fluorescence observed
through the oculars with a fluorescein LP filter (i.e.,
red, green, and yellow cells seen with the eyes were
correlated to those imaged in the true-color overlay
of the confocal scanner). The flowcell, placed under
the CLSM, was not moved during the 40 h of
operation in order to always image the same posi-
tions. Images where collected at 16, 21, 24, 28, 32,
36 and 40 h after inoculation. The analyzed images
represent an area of 250 X 250 wm? with a resolu-
tion of 512 x 512 pixels at 8 hit colordepth (256
gray-values). Each image acquisition event consisted
of up to 31 optical sections evenly spaced by a
vertical step of approximately 2 pm. Images where
stored using the “tiff export” option on the Leica
software, which saves each individual cross-section
as a standard tiff-format digital picture.

2.3. Phenanthrene degrading biofilm growth

For the growth of gfp-labeled Sphingomonas sp.
A0, a phosphate minimal medium without carbon
source was used, with the following composition:
0.88 g I"* Na,HPO,, 0.1 g I"* KH,PO,, 0.25
(NH,),S0,, 0.05 mg I-* MgCl;6H,0, 0.03 g1~ *
CaNO,),4H,0, 4 mg I~* NaEDTA, 1.5 mg |~*
FeCl,, 5x 1072 mg " MnCl;4H,0, 2x 102
mg 1! CoCl;6H,0, 1.5x 1072 mg I°*
Na,MoO, 2H,0, 1x 102 mg I-* ZnCl2, 25X
107* mg 1~ LiCl,25x 1073 mg1~* SnCl; 2H,0,
5x1072 mg I™* H,BO; 1x 1072 mg I~* Kbr,
1x1072 mgl~* Kl and 25 x 1073 mg |~ BaCl,.
The medium was prepared from concentrated stock
solutions. Mineral and buffer stock solutions were
autoclaved separately to avoid precipitation of phos-
phate salts. The internal glass surface of flowcells
was covered with phenanthrene crystals (Sigma
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Aldricht, St. Louis) by applying first a layer of
acetone to fixate the crystals. A medium flow rate of
5ml min~! was used.

2.4. Image acquisition for phenanthrene degrading
biofilm

Gfp-labeled Sphingomonas sp. A0 cell fluores-
cence were detected using excitation at 488 nm and
emission at 515 nm (longpass-filter), detailed infor-
mation is available in Schnell et a., in preparation.
Phenanthrene crystals were detected using excitation
at 543 nm and emission in the red range (without
filter). The fluorescence of cell material and phenan-
threne crystals is recorded by the two distinct chan-
nels, producing two distinct but superimposing gray
scale images. The magnification used was 400 X
with a 40 X oil immersion lens. A 1278 X 639-u.m
area within the flow cell was observed, by scanning
a four by two set of 319.4 X 3194 pm square
subsections at a 512 X 512 pixel resolution using an
automated setup (Kuehn et al., 1998). Biofilm thick-
ness was scanned vertically by acquiring optical
Cross-section at 2-pm steps, up to 64 wm. One set of
images was collected each day of the experiment,
lasting 7 days following cell inoculation.

2.5. Digital image processing

All image processing was implemented under
Matlab programming environment (Matlab 5.3, The
Mathworks). Matlab was chosen due to convenience
offered for matricial calculus and the capability to
emulate parallel processing operations. A software
package was developed using Matlab language to
implement the algorithms introduced below. Matlab
functions and script files are available from the
authors upon request. The hardware for computation
consisted of Pentium processor-based pc-compatibles
running Linux operating system.

2.6. Image segmentation—automated threshold level
selection

Original CLSM images, collected with 256 gray-
values, must be converted to binary images in order
to measure volumetric parameters through a process
caled image segmentation (Fig. 1). An automated
segmentation method of three-dimensional CLSM
data sets, named objective threshold selection (OTS),
was developed. OTS development was based on the

Grayscale

Binary

| : m O

0 255 Background Biofilm

Fig. 1. Gray scale image of an optical cross-section for the
denitrifying biofilm, acquired at 28 h and 18 pwm from the solid
substratum, and corresponding binary image after segmentation.
Image segmentation was performed by direct thresholding at gray
level 136, which was determined using OTS.

approach introduced by the robust automated thresh-
old selection (RATS) method (Xavier et al., submit-
ted for publication), which states that for a two-di-
mensional image, A, and in the absence of noise, the
optimum threshold (T) is given by Eg. (1). In this
equation, p(x,y) is the gray-value for the pixel
found at coordinates (x,y), and e is an edge informa-
tion matrix for image A. The edge information ma-
trix can be obtained using one of several edge detec-
tion agorithms found in the literature (Wilkinson
and Schut, 1998).

Ye(x.y) - p(xy)

T Tk 4

RATS can be extended to a three-dimensional
data set by replacing e(x,y) and p(x,y) in Eq. (1)
by three-dimensiona equivalents, e(x,y,z) and
p(x,y,2z). It was demonstrated that, for noisy images,
the RATS method yields optimum results when the
background and the object each occupy 50% of the
image (Xavier et a., submitted for publication). Us-
ing the RATS method directly on noisy images
where the object is represented in less than 50% of
the image will return threshold levels that over-
estimate the size of the object. Several modifications
of the RATS are available for two-dimensional im-
ages that compensate low object fractions (Wilkin-
son and Schut, 1998). Such methods use powers of
the edge, e™ with m> 1, in Eq. (1), which resultsin
attributing greater statistical weight to higher gradi-
ent pixels. The OTS method proposed here is based
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on RATS, further developed to handle the particular
geometric properties of CLSM biofilm 3D imaging,
a description of the algorithm follows.

OTS starts by computing multiple T-values, one
for each vertica column of the stack of optical
sections representing the observed volume, i.e., set
of voxels placed on a column which is perpendicular
to the solid substratum surface. T-values are at-
tributed to each (x,y) position in a surface parallel
to the solid substratum (Eqg. (2)).

ie(xiy,Z)‘p(X,y'Z)

T(xy) = p (2
Y e(x,y,2)

z=12,

Although matrix T(x,y) in no way constitutes a
vertical projection of the 3D stack, an analogy with
maximum projection operations allows better visual-
ization of the concept. Maximum projection opera-
tions result in the two-dimensional mapping of the
maximum gray-value found along a column of vox-
els perpendicular to the substratum surface. Simi-
larly, the matrix T(x,y) is a two-dimensional map-
ping of the T-values determined using RATS along a
column of voxels perpendicular to the substratum
surface.

The edge matrix, e(X,y,z), used in OTS is the
norm of the numerical gradient of p(x,y,z), which
is trandated as Eg. (3), obtained by substituting
differentias by finite differences.

3 9
—pU’y+ —pu’
X

ax “°
o NI
(3

The values for T(x,y) are used to find a cumula-
tive distribution of T, F(T), which is then statisti-
cally analyzed to determine the median value, T,
and an arbitrary confidence level range. A 95%
confidence level range, [T, 05, Tog7s), IS SUggested
for quantitative analysis and will be used below.

Although a main assumption for RATS is that the
image is noise-free, the OTS procedure does not
have that limitation as it uses the vertical orientation

Voll=||—u,+
1Vl Hax X

of biofilm geometry to compensate for the effect of
noise. The (x,y) positions on the 3D image where
no object is found are identified and excluded by
OTS, as this is where noise would greatly bias the
median T to lower values. Thisis an iterative opera-
tion that starts by estimating an initia threshold
value, T°, by applying Eqg. (2) to the whole dataset.
The value T? is then used to reduce the dataset by
thresholding a maximum vertical projection image
and removing areas in which no object is found. T*
is found by applying Eg. (2) to the reduced data set.
The iterative process continues until a stationary

1
0 50 150 200 250
Thyeshold levg] - T

Biovolume [um?]

0 50 100 150 200 250
Threshold level - T

Fig. 2. Measuring biovolumes with confidence 95% levels using
the cumulative distribution for threshold levels, F(T). The confi-
dence interva for threshold value is determined from F(T), in the
top plot, and propagated to find maximum and minimum values
for the confidence interval of the volumetric parameter being
estimated, in the bottom plot.
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value, T"=T" 1 is reached (see Appendix A for
MATLAB™ implementation of the OTS algorithm
with explanatory annotations).

2.7. Measurement of volumetric parameters

Measurement of volumesis obtained directly from
the binary three-dimensional image using a voxel
counting algorithm and converting the obtained value
using the volume of a voxel in length units (wm? in
this case). Measurement of interfacia area from
binary images is a computationally intensive process,
which uses the Matlab™ isosurface function to find
the coordinates of a set of adjacent polygons that
approximates the biofilm interfacial surface. Volu-
metric parameters are highly dependent of the
threshold level used for segmentation and, conse-
quently, determining its values with a statistical con-
fidence level is imperative. For a given volumetric
parameter, v, a function of its dependence of the
threshold level, T, can be determined, v(T). Then,
the cumulative distribution of threshold levels, F(T),
identifies confidence intervals that can be propagated
for the volumetric parameter being estimated, v (Fig.
2).

3. Volumetric measurements of biofilm CLSM
images

3.1. Example 1—Denitrifying biofilm system-time
course biovolume measurements with microscope
settings optimized for each image acquisition

A mixed species culture was grown under denitri-
fying conditions in a flowcell reactor for 40 h and
monitored using CLSM. Three-dimensional CLSM
images of the whole biofilm structure were collected
at the same position within the flowcell at 16, 21, 24,
28, 32, 36 and 40 h after inoculation. Microscope
settings were tuned prior to each image acquisition
to avoid image saturation so that the available 8 bit
gray scale is used to its full extent. Each set of
images was processed independently for measure-
ment of biovolume and interfacial area, following
automated determination of threshold levels.

3.1.1. Image segmentation

The OTS method described above was used for
automated determination of threshold levels for im-
age segmentation by direct thresholding. The cumu-

lative distributions of threshold levels, F(T), were
used to determine median values, T,;, and 95%
confidence level limits, T q,s and T, 4,5 (Table 1).

3.1.2. Biovolume measurements

Biovolume was determined using median thresh-
old levels, T,s. The measurement error associated
with the segmentation is reflected in the confidence
intervals for biovolume. Biovolume measurement, V,
was observed to be highly dependent of the threshold
level used for segmentation (Fig. 3A). The 95%
confidence interval is determined by finding biovol-
ume maximum and minimum within [T 5,5, Tog75]-
Biovolume was observed to grow exponentialy dur-
ing the period studied, with a growth rate of u, =
0.09 + 0.03 h™1. Therefore, the volumetric measure-
ments were obtained for a sixfold increase in biovol-
ume. It is noteworthy that the absolute error was
found to be independent of the volume measured
(Fig. 3B).

3.1.3. Biofilm interfacial area measurements

Median values for the interfacial area were deter-
mined from thresholding at T,5. The measurement
error associated with the segmentation procedure is
determined by plotting interfacial area as a function
of the threshold level (Fig. 5A). The interfacial area,
function of the T-level, A(T), is not aways mo-
notonous within the [T, .5, Togrs], @ Opposed to
V(T) which typicaly decreases with T. Interfacial
area for the biofilm was found to increase in the 40 h
of the experiment with a specific growth rate of
s =05+0.03h! (Fig. 4B).

Table 1

Automated threshold levels obtained by OTS of CLSM images
from the denitrifying flow cell (example 1)

The median vaue, T, 5, and 95% confidence levels were extracted
from the cumulative distribution F(T), such as the one repre-
sented in Fig. 3. Each time sample of images was analyzed
independently. The threshold values listed in this table delimit the
confidence intervals propagated in Figs. 4A and 5A.

Time (h) To.0z5 Tos To.ors
16 173 47 18
21 188 126 70
24 196 134 79
28 185 136 88
32 193 151 104
36 194 151 104
40 192 151 102
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Fig. 3. (A) Distribution of biovolume estimate as a function of the
threshold value used for image segmentation. Median values for
biovolume are represented by the black symbols (m) on each
curve corresponding to a time image acquisition. The lines repre-
sent the dependency of volume on segmentation threshold value
within the 95% confidence interval for both parameters (notice
that the vertical and horizontal errors intersect at the ends of the
line). Confidence interval for biovolume was propagated from the
threshold distribution (Table 1), as shown in Fig. 2. (B) Biovol-
ume measurements for the denitrifying biofilm from 21 to 40 h
after inoculation. Error bars represent 95% confidence intervals
obtained from the dependency on segmentation threshold plotted
in (A).

15

3.2. Example 2—Biofilm grown on phenanthrene
crystal-time course biovolume measurements with
fixed microscope optical settings

The growth of a monospecies biofilm of a
phenanthrene degrading Sphingomonas sp. strain in
the presence of phenanthrene crystals as the sole
carbon source was monitored for 7 days. The biofilm
was observed through gfp expression of the Sphin-
gomonas strain. Phenanthrene crystal particles,
placed on the surface of the solid substratum where
biofilm growth took place, were observed by auto-

1.4E+006

1.2E+006

1E+006

800000

600000

400000

Biofilm interfacial area [pmz]

200000

0 1 | 1 L ! 1 | 1 i
0 20 40 60 80 100 120 140 160 180 200

Time [h]
1.4E+006
1284006 B
=
s 1E+006 |
14
o
= 800000 [
2
E 600000 | I
E T
£ 400000 [
E
L
@ 200000 —I
0..:.I...:I||.|I.||‘I---|I

15 20 25 30 35 40
Time [h]

Fig. 4. (A) Distribution of interfacial area estimate as a function of
the threshold value used for image segmentation. Median values
for interfacial area are represented by the black symbols () on
each curve corresponding to a time image acquisition. The lines
represent the dependency of volume on segmentation threshold
value within the 95% confidence interval for both parameters
(notice that the vertical and horizonta errors intersect at the ends
of the line). Confidence intervals for interfacial area were propa-
gated from the threshold distribution (Table 1), as shown in Fig. 2
for volume estimation. (B) Interfacial area measurements for the
denitrifying biofilm between 21 and 40 h after inoculation. Error
bars represent 95% confidence intervals obtained from the depen-
dency on segmentation threshold plotted in (A).

fluorescence on red wavelengths. CLSM images of
both the green and red color channels were collected
once a day for the duration of the experiment. A four
by two set of adjacent three-dimensional image stacks
was collected for each color channel per day, follow-
ing the automated image acquisition procedure
described in Materials and methods. Unlike the pre-
vious example, here the optical settings of the micro-
scope were optimized for the conditions of the first
imaging, on day 1, and maintained throughout the
duration of the experiment. The image stacks ob-
tained from the two channels were processed inde-
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Fig. 5. Biovolume measurements for the monospecies phenan-
threne degrading Sphingomonas sp. AO biofilm. Comparison
between biovolume estimates obtained from automated OTS
segmentation and visua threshold selection by an experienced
operator. Confidence intervals for the OTS estimates correspond
to a 95% probability level identified by propagation of threshold
values, as described in Fig. 2.

pendently for the determination of threshold levels
and biovolume measurements. Only the latter are
presented here (Fig. 5). It can be seen in this figure
that, unlike the previous example where error inter-
vals were observed to stay relatively constant, they
increase as biofilm growth progresses. The fact that
settings were selected at low quantities of biomass
causes images collected at later growth stages to
show increasing brightness saturation. In this plot,
biovolume estimates using OTS were also compared
with values obtained using segmentation by visual
threshold selection by an experienced operator. It
was observed that the two were similar, with values
obtained manually falling within the 95% confidence
intervals of the automated estimates. Volume esti-
mates based on manual segmentation do not generate
objective confidence intervals, as that would require
repeated visual segmentation by several experienced
operators, not a practical proposition.

4, Discussion

The OTS method presented was evaluated by
processing CLSM images from two different biofilm
systems, where time-resolved data was generated
describing biofilm morphogenesis. The first example
consisted of a mixed species biofilm grown under
denitrifying conditions for 40 h. Three-dimensional
images were acquired at seven time points, ranging

J.B. Xavier et al. / Journal of Microbiological Methods 47 (2001) 169-180

from 16 to 40 h after inoculation. For this first case,
microscope settings were reset by the operator prior
to each image acquisition. In the second system,
growth from a mono-species biofilm from phenan-
threne degrading Sphingomonas sp. strain A0 was
imaged in the presence of phenanthrene crystals as
the sole carbon source. The CLSM images were
acquired once every day, up to 7 days after inocula
tion. In this case, microscope settings were selected
for the first image acquisition, right after flowcell
inoculation, and maintained throughout the entire
experiment. The fact that settings were chosen when
the biofilm showed least fluorescence caused images
collected at later times, when a larger amount of
biomass was present, to show more brightness satu-
ration, which was reflected by an increase in the
estimated error (Fig. 5). This explains why the esti-
mates with the steadier confidence intervals (Figs. 3
and 4) are achieved by resetting image acquisition
parameters for each image acquisition in order to
minimize the proportion of saturated voxels. Never-
theless, the median estimates were observed to be
relatively insensitive to sub-optimal microscope set-
tings, which are mostly reflected in the broader
confidence interval. Similarly, degradation in the
quality of the image in general was observed to have
a noticeable effect in the confidence interval of
volumetric estimates. The robustness of the median
value is based on the even distribution of T-values.
There is, however, a cause of loss in image quality
that will be not apparent in the analysis of confi-
dence distributions—insufficient light penetration to
the furthest optical sections of thick specimens. This
can be understood by noting that a single threshold
value is obtained for each vertical voxel column and
dim fluorescence in the furthest positions due to
insufficient light penetration or thinning of cellular
material would be undistinguishable. Nevertheless,
thisis a circumstance that the CLSM operator would
promptly identify.

5. Conclusion

The image analysis procedure proposed here,
named optical threshold selection (OTS), automates
the determination of threshold levels for 3D-image
segmentation. This method was applied to biofilm
images obtained by confocal laser scanning mi-
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croscopy and was shown to reproduce values ob-
tained manually by experienced operators. In addi-
tion to the savings in time and manpower, the
proposed method is amenable to a statistical analysis
to extract confidence intervals, a feature not practical
with the current manual selection procedure. The
algorithm developed is based on earlier work on
robust threshold selection (RATS) in 2D images,
which is generalized for three and higher dimensions
—a time series of 3D images is a 4D object. The
determination of confidence intervals follows a non-
parametric approach, not making any assumption
regarding threshold distribution in the image. The
identification of confidence intervals for volume and

I:’ Iteration 1

]:l Final Iteration (#39)

area estimates is obtained by propagation of the
observed distribution. OTS enables segmentation of
images of any dimension that is both independent
from acquisition settings and fully automated.

Appendix A. Implementation of the algorithm on
MATLAB™ —code and example of application

The algorithm for the OTS was fully implemented
on MATLAB™ 5.3 and is part of the CLSM tool-
box, developed by the authors, which is available
freely upon request, and may also be downloaded
from http: / /www.itgb.unl.pt:1111 / ~ jxavier/
clsmtoolbox /clsmtoolbox.zip.
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Fig. 6. lllustration of the iterative process used to compensate for the effect of noise on the determined threshold (accompanying code
listed). (A) Origina optical cross-section (gray scale) of a biofilm, part of a 3D stack. (B) Changes on the cumulative distribution of
threshold values, F(T) computed following Eq. (2), throughout the iterations. F(T) is used to estimate a mean threshold level, which is then
used on a projection images of the biofilm. Only the area delimited by the maximum projection in the previous iteration is then used to
determine F(T) on the following iteration. (C) Area of the substratum covered by biofilm according to the first and final iterations. (D)
Image after segmentation by direct thresholding with the final mean T-value.
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The CLSM toolbox contains implementation of
several image processing operations, as well as func-
tions for loading CLSM stacks onto the MATLAB
workspace. In the CLSM toolbox package, there
is aso a detailed reference manua in html for-
mat, which includes instructions for installation un-
der Microsoft Windows™. An online version of
the HTML manual for the CLSM toolbox may

also be found at http: / /www.itgb.unl.pt:1111/ ~
jxavier / clsmtoolbox / clsm_toolbox_help / index.
html.

The integral transcription of the MATLAB™ -code
for the pivotal function iterative_cdor _Ft, which is
central to the OTS method, is listed below. The code
is annotated with comments that refer to the illustra-
tion of its processing in Fig. 6.

function [Ft,T50,T975,T025,nit]=iterative_cdvr_Ft(im,Dz)

% [Ft,T50,T975,T025,nit]=iterative_cdvr_Ft(im,Dz) — Cumulative

distribution of vertical RATS

% and threshold value (with 95% confidence level) following the OTS

(Objective Threshold Selection) method

%

% Computes RATS cumulative distribution with iterations to

% increase weight of colonized areas.
%
% Input arguments:

% im - three-dimensional matrix with stack of CLSM images (Fig. 6A)
% Dz - ratio of vertical step (distance between optical cross

sections)

% by the pixel size of optical cross section images

%

% Output arguments:

% Ft - cumulative distribution of vertically oriented thresholds

% T50

- mean threshold value, such that F(T50) = 50%

% T975 - upper limit of the threshold value 95% confidence level,

such that F(T975) =97.5%

% T025 - lower limit of the threshold value 95% confidence level,

such that F(T025) = 2.5%
%

% Jodo Xavier (jxavier@itgb.unl.pt) - September 2000

if (nargout~=5),

error(‘iterative_cdvr_Ft requires 5 output arguments "),

end;

[m,n,q]=size(im);
im=double(im);

% defining x,y and z oriented gradient kernels
Bx=zeros(3,3,3); Bx(2,1,2)=1; Bx(2,2,2)=-1;
By=zeros(3,3,3); By(1,2,2)=1; By(2,2,2)=-1;
Bz=zeros(3,3,3); Bz(2,2,1)=1/Dz; Bz(2,2,2)=-1/Dz;

% computing edge information

imedge=sqrt(ofilter3(Bx,im).”2+ofilter3(By,im)."2+ofilter3(Bz,im)."2);
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% removing border pixels that have distorted information:

deno_nb=imedge(2:m-1,2:n-1,2:q-1);

num_nb=deno_nb.*im(2:m-1,2:n-1,2:q-1);

[M,N,Q]=size(deno_nb);

deno_a=reshape(sum((reshape(deno_nb,M*N,Q))"),M,N);
num_a=reshape(sum((reshape(num_nb,M*N,Q))"),M,N);

deno=deno_a(find(and(deno_a~=0,num_a~=0)));
num=num_a(find(and(deno_a~=0,num_a~=0)));

% Finding first estimate of mean thresholding Tm

RATSs=sort(num./deno);
Tm=RATSs(round(length(RATSs)./2));

% iterative cicle (see Fig. 6B and 6C):

imtp=reshape(sum((reshape(im(2:m-1,2:n-1,2:q-1)>Tm,M*N,Q))"),M,N);

%projection of thresholded image
cfrac=sum(imtp(:)>0)./(M*N);
nit=1;

Tma=-1; %initial value for the cycle check

while Tm~=Tma,
Tma=Tm;
nit=nit+1;

deno2=deno_a(find((deno_a~=0).*(num_a~=0).*(imtp>0)));
num2=num_a(find((deno_a~=0).*(num_a~=0).*(imtp>0)));

RATS2=num?2./deno2;
RATSs=sort(RATS2);

Tm=RATSs(round(length(RATSs)./2));
imtp2=reshape(sum((reshape(im(2:m-1,2:n-1,2:q-1)>Tm,M*N,Q))"),M,N);
cfrac=sum(and(imtp2(:)>0,imtp(:)>0))./sum(imtp(:)>0);

imtp=imtp2;
end;

% Attribute values for output arguments
Ft=RATSs;
T50=RATSs(round(length(RATSs)*.5));

T975=RATSs(round(length(RATSs)*.975));
T025=RATSs(round(length(RATSs)*.025));
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