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Abstract

Some of the finest surviving natural habitat in the United States is on military reservations where land has been protected from
development. However, responsibilities of military training often require disturbance of that habitat. Herein, we show how the
soil microbial community of a long-leaf pine ecosystem at Fort Benning, Georgia responds to military traffic disturbances. Us-
ing the soil microbial biomass and community composition as ecological indicators, reproducible changes showed increasing
traffic disturbance decreases soil viable biomass, biomarkers for microeukaryotes and Gram-negative bacteria, while increas-
ing the proportions of aerobic Gram-positive bacterial and Actinomycete biomarkers. Soil samples were obtained from four
levels of military traffic (reference, light, moderate, and heavy) with an additional set of samples taken from previously dam-
aged areas that were remediated via planting of trees and ground cover. Utilizing 17 phospholipid fatty acid (PLFA) variables
that differed significantly with land usage, a linear discriminant analysis with cross-validation classified the four groups. Wilks’
lambda for the model was 0.032 (P < 0.001). Overall, the correct classifications of profiles was 66% (compared to the chance
that 25% would be correctly classified). Using this model, 10 observations taken from the remediated transects were classified.
One observation was classified as a reference, three as light trafficked, and six as moderately trafficked. Non-linear artificial
neural network (ANN) discriminant analysis was performed using the biomass estimates and all of the 61 PLFA variables. The
resulting optimal ANN included five hidden nodes and resulted in anr2 of 0.97. The prediction rate of profiles for this model was
again 66%, and the 10 observations taken from the remediated transects were classified with four as reference (not impacted),
two as moderate, and four as heavily trafficked. Although the ANN included more comprehensive data, it classified eight of the
10 remediated transects at the usage extremes (reference or heavy traffic). Inspection of the novelty indexes from the prediction
outputs showed that the input vectors from the remediated transects were very different from the data used to train the ANN.
This difference suggests as a soil is remediated it does not escalate through states of succession in the same way as it descends
following disturbance. We propose to explore this hysteresis between disturbance and recovery process as a predictor of the re-
silience of the microbial community to repeated disturbance/recovery cycles. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Managers at military installations provide land for
training of military personnel. Often, such activities
are inconsistent with sustainable land use practices.
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An effective monitoring program capable of predic-
ting recovery from training use is essential to ensuring
the long-term viability of these lands. Previously, the
majority of these monitoring programs have focused
on biodiversity of terrestrial macroorganisms that
have a long period of recovery and require expensive
monitoring specialists. Microorganisms that can be
quantitatively monitored with chemical biomarkers
have been largely overlooked despite their complete
integration and dependency with the macroworld (Zak
et al., 1994; Lee, 1991).

Microbial biomass in soil has a turnover time of
less than a year and can react quickly to conditions
of nutrients, moisture, temperature and the type and
amount of soil organic matter levels (Paul, 1984). Vi-
able microbial biomass is integral for nutrient storage
and cycling (Rice et al., 1996), soil aggregate forma-
tion (Tisdall and Oades, 1982), and other ecological
factors such as filtering, buffering, and gene reserves
(Blum, 1998). Soil microbial biomass and community
composition have been shown to be sensitive indica-
tors of changes in nutrient type (Peacock et al., 2001;
Kirchner et al., 1993), botanical composition (Borga
et al., 1994), pollutant toxicity (Stephen et al., 1999),
and climate change (Zogg et al., 1997). Because
the microbial community integrates the physical and
chemical aspects of the soil and responds to anthro-
pogenic activities, it can be considered a biological
indicator of soil quality (Rice et al., 1996). The micro-
bial viable biomass, community composition, and nu-
tritional status can be readily measured by analysis of
extracted lipids to provide rational endpoints for many
disturbance/recovery processes (White et al., 1998).

In this study, we investigated the utility of using the
soil microbial biomass and community composition
as ecological indicators of change along an anthro-
pogenic disturbance gradient. The disturbance gradi-
ent included the duration and type of traffic in military
training areas in a long-leaf pine habitat. The hypothe-
sis was that duration and intensity of disturbance (traf-
fic) in the long-leaf pine ecosystem would be reflected
in changes in the soil microbial community biomass
and structure. These changes could be quantitatively
measured by phospholipid ester-linked fatty acid
analysis (PLFA). In addition, we used two different
data analysis techniques to classify disturbance, the
first, a linear discriminant analysis classified transects
based on 17 PLFA variables, the second, a non-linear

artificial neural network analysis which included all
61 PLFA variables and the biomass in which to base
predictions. Herein, we compare these two analyses.

2. Materials and methods

2.1. Study site

This study was conducted at the Fort Benning Army
Installation located in the lower Piedmont Region and
lower coastal plane of central Georgia and Alabama,
near Columbus, Georgia. The post consists of approx-
imately 73,650 ha of river valley terraces and rolling
terrain. The climate at Fort Benning is humid and mild
with rainfall occurring regularly throughout the year.
Annual precipitation averages 105 cm with October
being the driest month. The majority of the soils at the
installation are heavily weathered Ultisols.

This study encompased training areas that have been
subjected to a range of military traffic. Disturbance of
the soil ecosystem due to training includes the direct
removal or damage of terrestrial vegetation, digging
activities, dislocation, and compaction from vehicles,
erosion, and sedimentation. The degree and extent of
the impacts of training activities within a compart-
ment are dependent upon the type of activity, number
of personnel training, and how frequently the com-
partment is exposed to activity. Furthermore, training
activity typically occurs irregularly throughout a com-
partment, creating localized gradients of disturbance
within individual compartments.

2.2. Soil sampling

Soil cores were collected in the Autumn of 1999. To
avoid cross contamination in between each sample, the
soil cores were washed in solvent (methanol) and ster-
ile distilled water. Cores were approximately 20 cm
in length and 2 cm in width. For each core taken, the
depth of the core and the presence/absence of an “A”
horizon was reported. Five samples were taken from
separate plots at each transect (14 transects× 5 = 70
samples, Table 1). Of the transects selected, three
were reference transects (with stand ages 28, 68,
and 74 years); three were heavy usage (undergoing
tracked vehicle training); three were moderate usage
(areas adjacent to tracked vehicle training); three were
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Table 1
Sample design

Transect Number of
samples

Disturbance

A 5 Reference
E 5 Reference
M 5 Reference
D 5 Light
L 5 Light
N 5 Light
C 5 Moderate
I 5 Moderate
K 5 Moderate
B 5 Heavy
H 5 Heavy
J 5 Heavy
F 5 Remediated
G 5 Remediated

light usage (infantry training), and two came from a
site currently undergoing remediation (previous heavy
disturbance, currently trees and groundcover planted
and no usage). Samples were stored at−80◦C prior
to analysis.

2.3. PLFA analysis

PLFA analysis was performed using previously
reported precautions (White and Ringelberg, 1998).
Soil samples (5 g) were extracted with the single-phase
chloroform–methanol buffer system of Bligh and
Dyer, 1954, as modified (White et al., 1979). The
total lipid extract was fractionated into neutral lipids,
glycolipids, and polar lipids by silicic acid column
chromatography (Guckert et al., 1985). All results
presented in this paper are for the polar lipid fraction.
The polar lipids were transesterified to the fatty acid
methyl esters (FAMEs) by a mild alkaline methano-
lysis (Guckert et al., 1985).

The FAMEs were analyzed by capillary gas chro-
matography with flame ionization detection on a
Hewlett-Packard 5890 series 2 chromatograph with
a 50 m non-polar column (0.2 mm i.d., 0.11�m
film thickness). Preliminary peak identification was
performed by comparison of retention times with
known standards. Definitive identification of peaks
was accomplished by gas chromatography/mass spec-
troscopy of selected samples using a Hewlett-Packard
6890 series gas chromatograph interfaced to a

Hewlett-Packard 5973 mass selective detector using
a 20 m non-polar column (0.1 mm i.d., 0.1�m film
thickness).

Fatty acids are named according to the convention
X:YωZ, where “X” stands for the number of carbon
atoms in the chain, “Y” for the number of unsatu-
rations, and “Z” the number of carbon atoms from
the terminal methyl end of the molecule to the first
unsaturation encountered. Prefixes; “i”≡iso-branched,
“a”≡anteiso-branched, “10me”≡methyl branch on the
10th carbon from the carboxylate end, “Br”≡branched
at unknown location, and “Cy”≡cyclopropyl. The suf-
fixes “c” and “t” stand for thecisandtrans, geometric
isomers of the unsaturation, respectively. When dif-
ferent fatty acids had the same designation, they were
distinguished by lower case letters suffixes a, b, etc.
(Gunstone and Herslöf, 1992).

2.4. Statistical analysis

Biomass (pmol/g PLFA) and relative propor-
tion (mol%) of specific PLFA were used to test
the null hypothesis that degree of land disturbance
would not influence the composition of the soil
microbial communities. To test that hypothesis, an
analysis of variance (ANOVA) using the General
Linear Model STATISTICA procedure (Statsoft Inc.,
Tulsa, OK) for a completely randomized design
with five treatments was used. The values reported
are least square means of 15 replicates, except in
the case of the remediated treatment which con-
tained 10 replicates (totaln = 70). Standard errors
of the means were determined. Differences in the
mean proportions of PLFA in each treatment were
tested using Tukey’s Honest-Significant-Difference
procedure. A hierarchical cluster analysis (Ward’s
method, 1-Pearsonr) was used to discover how the
PLFAs that differed significantly with treatment were
clustered.

A linear discriminant analysis with cross-validation
(SAS Institute Cary, NC) was chosen to classify the
observations into one of the four usage classes (n =
60, 15 observations in each group) based on the degree
of land disturbance. Only those PLFA that comprised
at least 1% of any profile were included in the analysis.
Therefore, fatty acids that may have been unreliably
quantified were not included. Before statistical anal-
ysis, arcsine square root transformation was applied
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to the mol% PLFA data. After truncation, a one-way
ANOVA was conducted on the remaining PLFAs, and
those that differed significantly with usage were in-
cluded in the model.

2.5. Artificial neural network analysis

Neural network identification was performed with
early stopping by cross-validation and topology opti-
mization by bootstrapping (selection criteria; median
cross-validated error), using microcortex web based
neural computing environment (www.microcortex.
com).

3. Results

Degree of land use resulted in a significant differ-
ence in the microbial biomass estimates (PLFA), for
the highly trafficked soil (P < 0.05, Fig. 1). If it is as-
sumed that 1 pmol of PLFA is equivalent to 2.5× 104

bacterial cells (Balkwill et al., 1988; Pinkart et al.,
2000), then bacterial density in the soils ranged from
approximately 7.7×108 cells g−1 in the reference soil
to 3.8 × 107 cells g−1 in the heavily trafficked soil.

Fig. 1. Microbial biomass PLFA of samples from the four disturbance categories and samples undergoing remediation. The reference
samples contain the highest microbial biomass followed by light and moderate disturbance and finally heavy disturbance.

The soil currently undergoing restoration contained an
average of 5.8 × 108 cells g−1.

PLFA analysis identified 61 fatty acids all of
which are commonly found in soil environments
(Peacock et al., 2001). Of the 61 fatty acids de-
tected and quantified, 28 were highly significant
according to a one-way ANOVA (P < 0.001). Mean
separations were conducted on the 28 PLFAs using
Tukey’s Honest-Significant-Difference procedure and
the results are presented in Table 2. Generally, the
short-chain normal saturated PLFA (14:0, 15:0, and
16:0) decreased with increasing traffic, while the
longer chain normal saturated PLFA (18:0 and 20:0)
increased with increasing traffic. Monounsaturated
and polyunsaturated PLFAs decreased with increasing
traffic, whereas the methyl-branched saturated PLFAs
increased with increasing traffic. An exploratory hier-
archical cluster analysis (Ward’s method, 1-Pearson
r) was conducted using the 28 highly significant
variables (Fig. 2). Two primary clusters emerged.
The first contained predominantly short-chain satu-
rated, monounsaturated, and polyunsaturated PLFA,
while the second contained long-chain saturates,
methyl-branched monounsaturated, and saturated
PLFA. A secondary cluster derived from the first

www.microcortex.com
www.microcortex.com
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Table 2
Mean relative proportions of PLFAs by treatment

PLFA Reference Light Moderate Heavy Remediated

General
14:0 0.53 a 0.50 a 0.46 a 0.18 b 0.40 a
15:0 0.65 a 0.57 a 0.58 a 0.26 b 0.51 a
16:0 12.8 a 12.81 a 13.31 a 10.08 b 13.31 a
18:0 3.04 c 3.47 c 4.20 b 5.12 a 3.42 c
20:0 0.96 b 0.81 b 1.06 b 1.63 a 0.76 b

Gram-negative bacteria
15:1 0.08 a 0.09 a 0.09 a 0.02 b 0.06 ab
16:1w7 c 2.79 a 2.57 ac 2.29 bc 1.99 b 2.73 ac
16:1w5 c 1.9 a 1.82 a 1.96 a 1.52 a 2.49 b
17:1 0.16 ab 0.18 a 0.10 b 0.06 c 0.11 abc
18:1w5 c 0.89 a 0.96 a 0.89 a 0.35 b 0.95 a
Cy19:0 12.84 a 13.53 a 10.33 b 11.34 ab 8.92 b

Eukaryote (plant and fungal)
18:2w6 5.74 a 5.90 a 3.63 b 1.00 c 6.51 a
18:1w9 c 8.49 a 8.32 a 7.79 a 6.08 b 8.71 a
20:3w3 0.08 a 0.09 a 0.07 ab 0.01 b 0.08 a
20sat 2.08 a 2.08 a 1.32 b 0.00 b 0.01 b
poly20 a 0.13 a 0.16 a 0.03 b 0.02 b 0.02 b
poly20 b 0.18 ab 0.34 a 0.28 a 0.07 b 0.35 a

Actinomycetes type
i14:0 0.19 a 0.13 a 0.15 a 0.03 b 0.19 a
br16:0 a 0.80 b 1.06 b 1.23 b 3.89 a 0.92 b
br16:0 b 0.16 a 0.12 a 0.07 ab 0.01 b 0.07 ab
i16:0 3.22 ab 2.84 b 3.86 a 3.36 ab 3.51 ab
i17:1w7 c 1.44 b 1.49 ab 1.82 a 1.73 ab 1.6 ab
10me16:0 3.87 b 3.96 b 4.46 ab 4.82 a 4.13 ab
i17:0 2.17 c 2.24 c 3.76 b 4.79 a 2.95 c
a17:0 2.14 b 2.10 b 2.70 a 2.96 a 2.67 a
17:0 0.64 c 0.71 bc 0.76 b 0.88 a 0.67 bc
i10me16:0 1.26 c 1.34 c 3.35 b 6.04 a 1.93 c
12me18:0 0.68 c 0.66 c 1.45 b 2.43 a 1.48 b

Treatments followed by the same letter are not significant atα =
0.05.

primary cluster contained short-chain normal saturated
and 16 carbon monounsaturates. The remaining sec-
ondary clusters contained mostly 18–20 carbon mono-
and polyunsaturates. Secondary clusters derived from
the second primary cluster included long-chain nor-
mal saturates and methyl-branched fatty acids.

A linear discriminant analysis with cross-validation
was chosen to classify the observations into one of
four classes (n = 60, 15 observations in each group)
based on the degree of land disturbance. The first task
was to reduce the number of variables to be included
in the model. Only those PLFA that comprised at
least 1% of any profile were included in the analysis;

Table 3
PLFAs included in the discriminant model

a15:0 i17:0 18:1w9 c
i1:0 a17:0 18:0
16:1w7 c Cy17:0 10me18:0
brl6:0 a 17:0 Cyl9:0
i17:1w7 c i10me16:0 20sat
10mel6:0 18:2w6

therefore, fatty acids that may have been unreliably
quantified were not included. Before statistical analy-
sis arcsine square root transformation was applied to
the mol% PLFA data. After this truncation, a one-way
ANOVA was conducted on the remaining PLFAs, and
those that differed significantly with usage were in-
cluded in the model. The resulting model included 17
descriptor variables (Table 3). Wilks’ lambda for the
model was 0.32 (P < 001). Overall, the error esti-
mates for the model were 33% and the generalized dis-
tance between groups is reported in Table 4. Only the
first four treatments were used to construct the model.
Once the model was complete, the 10 observations
taken from the remediated transects were classified.
One observation was classified as a reference, three
as lightly trafficked, and six as moderately trafficked.

A non-linear artificial neural network discriminant
analysis (ANN) was performed using the biomass es-
timates and all of the 61 PLFA variables. The resulting
ANN included five hidden nodes and resulted in anr2

of 0.97. The correct classification of profiles for this
model was 66%, and six of the PLFAs had sensitiv-
ity values above 3%. As with the linear discriminant
model, once the ANN model was complete, it was
used to classify the observations from the remediated
transects. Four of the observations were classified
as reference, two as moderate, and four as heavily
trafficked.

4. Discussion

The four categories of traffic in this study varied in
the amount and diversity of the floristic component
(Dale and Beyeler, 2001). In addition, soil carbon
and nitrogen concentrations and stocks as well as the
carbon to nitrogen ratios, differed significantly with
degree of traffic (Garten et al., 2001). Soil compaction
due to the amount of traffic was also significantly



118 A.D. Peacock et al. / Ecological Indicators 1 (2001) 113–121

Fig. 2. Cluster analysis of significant PLFA variables (mol%). Two primary clusters emerged, the first contained primarily PLFAs indicative
of eukaryote microorganisms (polyunsaturates) and Gram-negative bacteria (monounsaturates). While the second contained PLFA indicative
of the Actinomycetes(methyl-branched saturates).

different along the disturbance gradient (Garten et al.,
2001).

Myers et al., 2001 states, “microbial metabolism in
soil is limited by the availability and types of organic

Table 4
Number of observations and percent classified into usage

Reference Light Moderate Heavy Total

Reference (%) 11 (73.33) 4 (26.67) 0 (0) 0 (0) 15 (100)
Light (%) 6 (40) 8 (53.33) 1 (6.67) 0 (0) 15 (100)
Moderate 0 (0) 2 (13.33) 11 (73.33) 2 (13.33) 15 (100)
Heavy 0 (0) 1 (6.67) 4 (26.67) 10 (66.67) 15 (100)

Error count estimates
Rate (%) 26.6 46.6 26.6 33.3 33.3
Priors (%) 25 25 25 25

Generalized squared distance
Reference 0 5.65 40.47 77.8
Light 5.65 0 23.22 52.95
Moderate 40.47 23.22 0 11.85
Heavy 77.8 52.95 11.85 0

substrates, and therefore it is plausible that ecosys-
tems which differ floristically will produce litter with
chemically distinct substrates that will differentially
foster microbial growth.” Soil microbial community
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composition and biomass differed along the gradient
as measured by the PLFA analysis. Biomass con-
tent in these soils decreased with increasing traffic
and was significantly lower in highly trafficked soil
(Fig. 1). Specific PLFA components can be related
to certain subsets of the microbial community, and
PLFA patterns can be used to define changes in the
community composition. Using the ANOVA results
(Table 2), the reference and the lightly trafficked
soil contained on average more PLFAs indicative of
eukaryotes (including plant associated PLFAs) and
Gram-negative bacteria (Wilkinson, 1988), whilst the
more trafficked soils contained relatively more PLFAs
associated with Actinomyctes (O’Leary and Wilkin-
son, 1988; Verma and Khuller, 1983). The HCL
analysis (Fig. 2) using variable clustering, illustrates
this point. Over the disturbance gradient, when PLFA
markers for eukaryotes and Gram-negative bacteria
were high the PLFAs indicative of the Actinomycetes
were low. Monounsaturated PLFAs are indicative of
predominantly Gram-negative bacteria (White et al.,
1996). An increase in the amount and type of carbon
sources has been shown to increase monounsaturated
PLFAs (Peacock et al., 2001; Bossio and Scow, 1998;
Macnaughton et al., 1999). The loss of monoun-
saturated PLFAs with traffic indicates a loss of
these types of bacteria. Terminally branched satu-
rated PLFA in aerobic environments are indicative of
Gram-positive bacteria, includingArthrobacter and
Bacillusspp. (White et al., 1996). Many of these types
of bacteria can be spore formers and can exist in envi-
ronments that are lower in overall organic carbon con-
tent and higher metabolic refractiveness (Boylen and
Ensign, 1970; Keynan and Sandler, 1983). Mid-chain
branched saturated PLFA are primarily indicative of
Actinomycete type bacteria in surface soils. It has
been stated that since these bacteria grow conidia,
they are able to better survive in relatively harsh soil
environments (desiccation and heat). This may give
these bacteria a competitive advantage in the heavily
trafficked areas (Alexander, 1998). Polyunsaturated
PLFA, shows significant decreases due to traffic and
indicates the loss of fungi and microbial grazers that
follows the loss of bacterial microorganisms.

Analysis of the soil microbial community PLFA in
a predictive linear discriminant model was successful
in distinguishing the amount of traffic a soil received.
Inspecting the generalized squared distance results

from the linear discriminant analysis revealed that
the reference and lightly trafficked soils were very
close in terms of the microbial community compo-
sition (Table 4). In comparison, the moderate and
heavily trafficked soils were very different. Indeed,
when observations were classified during model val-
idation, most of the misclassifications were between
the reference and lightly trafficked soils.

To more fully explore the relationships between the
soil disturbance and the microbial community compo-
sition, without assumptions of normal distributions or
linear relationships, a non-linear artificial neural net-
work discriminant model was applied to the data. The
overall predictive effectiveness for correct profile clas-
sification for the model was 66%, which was the same
for the linear discriminant model. However, the ANN
was constructed and optimized using all of the 61
PLFAs and included the biomass parameter. As with
the linear analysis, most of the misclassifications oc-
curred between traffic categories that were close (i.e.
moderate being classified as heavy). However, when
the ANN was used to predict the status of the remedi-
ated transects, eight of the 10 samples were classified
as either reference or heavy traffic. Inspection of the
novelty indexes from the prediction outputs showed
that the input vectors from the remediated transects
were very different from the data used to train the
ANN. This result is not surprising, as when the soil is
remediated, it does not escalate through states of suc-
cession in the same way it descended by disturbance.
In other words, in this case there is not a sliding scale
on which the ecosystem recovery can be measured,
but a new community succession is taken, initiated by
the remediation efforts (planting of groundcover and
trees). We propose to further explore this hysteresis
between disturbance and recovery process in the mi-
crobiota by coupling the lipid biomarker analysis to
the specific analysis of community DNA. DNA ana-
lyzed by PCR of rDNA with separation of components
comprising >1% of the community by denaturing gra-
dient gel electrophoresis (DGGE) for sequencing and
identification adds more specificity to the quantitative
analysis of the lipids. This provides a much clearer
model of disturbance and recovery from pollution than
either analysis done separately (Stephen et al., 1999).

The subtlety of the hysteresis between disturbance
and recovery was not detected with the linear dis-
criminant model that showed no bias toward extreme
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classifications. With the linear discriminant analysis,
most samples undergoing remediation were classified
as either moderate or light usage with one sample
being classified as reference. Since this analysis was
linear and only used 17 descriptor variables, the re-
sultant predictions may be of a more general nature,
whereas the ANN used the complete matrix in which
to base predictions. Regardless, the predictions of
the linear analysis could be accepted and used to aid
stakeholders in management of the land use.

5. Conclusions

The goal of this project was to explore the possi-
bility of using the soil microbial community as an
ecological indicator signaling the degree of environ-
mental degradation along a disturbance gradient. The
analysis based on the soil PLFA was successful, ref-
lected above-ground changes, and provided an index
of the degree of land disturbance (traffic) the soil re-
ceived. Both linear discriminant and non-linear ANN
analysis were able to adequately classify the degree
of disturbance. However, there were drawbacks when
the ANN and linear discriminant models were used
to predict stages of soil recovery in remediated tran-
sects. The linear discriminant model was shown to be
a fairly robust but perhaps coarse measure of reme-
diative efforts, and the ANN was sufficiently sensitive
to detect subtleties in recovery not detected with the
linear discriminant analysis, but in current form could
not be relied on to classify remediated samples. The
inclusion of data reflecting remediation in these mod-
els could possibly make them capable of monitoring
a more complete process of soil degradation and
recovery.

Acknowledgements

The authors would like to acknowledge the help of
Suzanne Beyeler and Patty Kosky in the field and Jonas
Almeida for suggestions regarding ANNs. We also
thank Theresa Davo for reviewing this manuscript.
The project was funded by a contract from the Con-
servation Program of the Strategic Environmental Re-
search and Development Program (SERDP) with Oak
Ridge National Laboratory (ORNL) under subcontract

4500012011, Indicators of Ecologica Change. ORNL
is managed by UT-Battelle, LLC for the US Depart-
ment of Energy under contract DE-AC05-00OR22725.

References

Alexander, D.B., 1998. Bacteria and Archaea. In: Sylvia, D.M.,
Fuhrmann, J.J., Hartel, P.G., Zuberer, D.A. (Eds.), Principles
and Applications of Soil Microbiology. Prentice Hall, NJ,
pp. 65–66.

Balkwill, D.L., Leach, F.R., Wilson, J.T., McNabb, J.F., White,
D.C., 1988. Equivalence of microbial biomass measures based
on membrane lipid and cell wall components, adenosine
triphosphate and direct counts in subsurface aquifer sediments.
Microb. Ecol. 16, 73–84.

Bligh, E.G., Dyer, W.J., 1954. A rapid method of total lipid
extraction and purification. Can. J. Biochem. Physiol. 37, 911–
917.

Blum, W.H., 1998. Basic concepts: degradation, resilience, and
rehabilitation. In: Lal, R., Blum, W.H., Valentine, C., Stewart,
B.A. (Eds.), Methods for Assessment of Soil Degradation. CRC
Press, Boca Raton, Florida.

Borga, P., Nilsson, M., Tunlid, A., 1994. Bacterial communities
in peat in relation to botanical composition as revealed by
phospholipid fatty acid analysis. Soil Biol. Biochem. 26, 841–
848.

Bossio, D.A., Scow, K.M., 1998. Impacts of carbon and flooding
on soil microbial communities: phospholipid fatty acid profiles
and substrate utilization patterns. Microb. Ecol. 35, 265–278.

Boylen, C.W., Ensign, J.C., 1970. Long-term starvation survival
of rod and spherical cells ofArthrobacter crystallopoietes. J.
Bacteriol. 103, 569–577.

Dale, V.H., Beyeler, S., 2001. Identifying ecological indicators of
change along an anthropogenic disturbance gradient within a
long-leaf pine habitat. Ecological Indicators (review).

Garten, C.T.Jr., Ashwood, T.L., Dale, V.H., 2001. Soil carbon
and nitrogen as ecological indicators of change along
an anthropogenic disturbance gradient. Ecological Indicators
(review).

Guckert, J.B., Antworth, C.P., Nichols, P.D., White, D.C., 1985.
Phospholipid, ester-linked fatty acid profiles as reproducible
assays for changes in prokaryotic community structure of
estuarine sediments. FEMS Microbiol. Ecol. 31, 147–158.

Gunstone, F.D., Herslöf, B., 1992. A Lipid Glossary. Oily Press,
Dundee, p. 101.

Keynan, A., Sandler, N., 1983. Spore research in historical
perspective. In: Hurst, A., Gould, G.W. (Eds.), The Bacterial
Spore, Vol. 2. Academic Press, New York, pp. 1–48.

Kirchner, M.J., Wollum, A.G., King, L.D., 1993. Soil
microbial populations and activities in reduced chemical
input agroecosystems. Soil Sci. Soc. Am. J. 57, 1289–
1295.

Lee, K.E., 1991. The diversity of soil organisms. In:
Hackworth, D.L. (Ed.), The Biodiversity of Microorganisms
and Invertebrates: Its role in sustainable agriculture.



A.D. Peacock et al. / Ecological Indicators 1 (2001) 113–121 121

CASA-FA Report, Series 4, Redwood Press Ltd., England,
pp. 72–89.

Macnaughton, S.J., Stephen, J.R., Venosa, A.D., Davis, G.A.,
Chang, Y.-J., White, D.C., 1999. Microbial population changes
during bioremediation of an experimental oil spill. Appl.
Environ. Microbiol. 65, 3566–3574.

Myers, R.T., Zak, D.R., White, D.C., Peacock, A.D., 2001.
Landscape-level patterns of microbial community composition
and substrate use in upland forest ecosystems. Soil Sci. Soc.
Am. J. 65, 359–367.

O’Leary, W.M., Wilkinson, S.G., 1988. Gram-positive bacteria. In:
Ratledge, C., Wilkinson, S.G. (Eds.), Microbial Lipids, Vol. 1.
Academic Press, London, pp. 117–201.

Peacock, A.D., Mullen, M.D., Ringelberg, D.B., Tyler, D.D.,
Hedrick, D.B., Gale, P.M., White, D.C., 2001. Soil microbial
response to dairy manure or ammonium nitrate applications.
Soil Biol. Biochem. 33, 1019–1101.

Paul, E.A., 1984. Dynamics of organic matter in soils. Plant Soil
76, 275–285.

Pinkart, H.C., Ringelberg, D.B., Piceno, Y.M., Macnaughton,
S.J., White, D.C., 2000. Biochemical approaches to biomass
measurements and community structure. In: Hurst, C.H.,
Knudsen, G.R., McInerney, M.J., Stetzenbach, L.D., Walter,
M.V. (Eds.), Manual of Environmental Microbiology, 1st
Edition, American Society for Microbiology Press, Washington,
DC, pp. 91–101.

Rice, C.W., Moorman, T.B., Beare, M., 1996. Role of microbial
biomass carbon and nitrogen in soil quality. In: Doran,
J.W., Jones, A.J. (Eds.), Methods for Assessing Soil Quality.
Special Publication no. 49, SSSA, Madison, Wisconsin, USA,
pp. 203–215.

Stephen, J.R., Chang, Y.J., Gan, Y.D., Peacock, A.D., Pfiffner,
S.M., Barcelona, M.J., White, D.C., Macnaughton, S.J., 1999.
Microbial characterization of a JP-4 fuel-contaminated site
using a combined lipid biomarker/polymerase chain reaction-

denaturing gradient gel electrophoresis (PCR-DGGE)-based
approach. Environ. Microbiol. 1 (3), 231–241.

Tisdall, J.M., Oades, J.M., 1982. Organic matter and water stable
aggregates in soils. J. Soil. Sci. 33, 141–163.

Verma, J.N., Khuller, G.K., 1983. Lipids ofActinomycetes. Adv.
Lipid Res. 20, 257–310.

White, D.C., Bobbie, R.J., Heron, J.S., King, J.D., Morrison,
S.J., 1979. Biochemical measurements of microbial mass
and activity from environmental samples. In: Costerton,
J.W., Colwell, R.R. (Eds.), Native Aquatic Bacteria:
Enumeration, Activity, and Ecology, ASTM STP 695.
American Society for Testing and Materials, Philadelphia, PA,
pp. 69–81.

White, D.C., Stair, J.O., Ringelberg, D.B., 1996. Quantitative
comparisons of in situ microbial biodiversity by signature
biomarker analysis. J. Indust. Microbiol. 17, 185–196.

White, D.C., Ringelberg, D.B., 1998. Signature Lipid Biomarker
Analysis. In: Burlage, R.S., Atlas, R., Stahl, D., Geesey, G.,
Sayler, G. (Eds.), Techniques in Microbial Ecology. Oxford
University Press, New York, pp. 255–272.

White, D.C., Flemming, C.A., Leung, K.T., Macnaughton, S.J.,
1998. In situ microbial ecology for quantitative appraisal,
monitoring, and risk assessment of pollution remediation in
soils, the subsurface and in biofilms. J. Microbiol. Methods 32,
93–105.

Wilkinson S.G., 1988. Gram-negative bacteria. In: Ratledge, C.,
Wilkinson, S.G. (Eds.), Microbial Lipids, Vol. 1. Academic
Press, London, pp. 299–489.

Zak, J.C., Wilig, M.R., Moorhead, D.L., Wildman, H.G., 1994.
Functional diversity of microbial communities: a quantitative
approach. Soil Biol. Biochem. 26, 1101–1108.

Zogg, G.P., Zak, D.R., Ringelberg, D.B., Macdonald, N.W.,
Pregitzer, K.S., White, D.C., 1997. Compositional and
functional shifts in microbial communities due to soil warming.
Soil Sci. Soc. Am. J. 61, 475–481.


	Soil microbial biomass and community composition along an anthropogenic disturbance gradient within a long-leaf pine habitat
	Introduction
	Materials and methods
	Study site
	Soil sampling
	PLFA analysis
	Statistical analysis
	Artificial neural network analysis

	Results
	Discussion
	Conclusions
	Acknowledgements
	References


